The primary goal of this project is to evaluate, through phase II randomized clinical trials for brain, head and neck, lung and liver cancers, the effectiveness of intensity-modulated proton therapy (IMPT) relative to intensity-modulated photon radiotherapy (commonly referred to as IMRT). The overall long-term goal and the expected outcome ofthe proposed research is the development of proton therapy strategies which maximally exploit the physical as well as biological properties of protons to improve clinical outcomes. The common theme ofthe proposed trials is acute and late toxicity reduction, quality of life (QOL) improvement and, potentially, improvement in local control and survival. This project supports the mission ofthe NCI to improve the treatment and continuing care of cancer patients.

Public Health Relevance

This research aims to improve radiation treatment for cancer patients by improving our ability to direct the radiation at the tumor to spare adjacent normal tissue by using protons (charged particles) with intensity-modulated proton therapy. This can potentially improve cancer cure rates, reduce side effects, or both, depending on the clinical scenario. With an increasing number of proton centers in the United States and abroad, the research in this program is increasingly important for public health.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program--Cooperative Agreements (U19)
Project #
2U19CA021239-35
Application #
8716843
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (J1))
Project Start
1997-04-01
Project End
2019-08-31
Budget Start
2014-09-25
Budget End
2015-08-31
Support Year
35
Fiscal Year
2014
Total Cost
$391,126
Indirect Cost
$81,446
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Guan, Fada; Geng, Changran; Ma, Duo et al. (2018) RBE Model-Based Biological Dose Optimization for Proton Radiobiology Studies. Int J Part Ther 5:160-171
Liao, Zhongxing; Simone 2nd, Charles B (2018) Particle therapy in non-small cell lung cancer. Transl Lung Cancer Res 7:141-152
Blanchard, Pierre; Gunn, Gary Brandon; Lin, Alexander et al. (2018) Proton Therapy for Head and Neck Cancers. Semin Radiat Oncol 28:53-63
Chen, Yizheng; Grassberger, Clemens; Li, Junli et al. (2018) Impact of potentially variable RBE in liver proton therapy. Phys Med Biol 63:195001
Geng, Changran; Gates, Drake; Bronk, Lawrence et al. (2018) Physical parameter optimization scheme for radiobiological studies of charged particle therapy. Phys Med 51:13-21
Liao, Zhongxing; Lee, J Jack; Komaki, Ritsuko et al. (2018) Bayesian Adaptive Randomization Trial of Passive Scattering Proton Therapy and Intensity-Modulated Photon Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer. J Clin Oncol 36:1813-1822
Yepes, Pablo; Adair, Antony; Grosshans, David et al. (2018) Comparison of Monte Carlo and analytical dose computations for intensity modulated proton therapy. Phys Med Biol 63:045003
Unkelbach, Jan; Paganetti, Harald (2018) Robust Proton Treatment Planning: Physical and Biological Optimization. Semin Radiat Oncol 28:88-96
Vassiliev, Oleg N; Kry, Stephen F; Grosshans, David R et al. (2018) Average stopping powers for electron and photon sources for radiobiological modeling and microdosimetric applications. Phys Med Biol 63:055007
Paganetti, Harald (2018) Proton Relative Biological Effectiveness - Uncertainties and Opportunities. Int J Part Ther 5:2-14

Showing the most recent 10 out of 47 publications