N.2: Project 2 Ovarian cancer is a lethal gynecologic malignancy and its development is poorly understood. We have performed four independent genome wide association studies (GWAS) in ovarian cancer and have identified highly significant, replicated single nucleotide polymorphisms (SNPs) associated with ovarian cancer risk. In Project 1, these GWAS will be combined to identify additional susceptibility loci and genetic variants associated with risk. Here we will evaluate the functional significance of candidate genes and SNPs at these loci.
The specific aims are as follows: 1. To evaluate the role of candidate genes at susceptibility loci in ovarian cancer. We will use bioinformatics tools to extract publicly available data describing a role for candidate genes in cancer. Next, we will assess differences in transcript/protein expression between ovarian cancer cell lines and primary tumours, and normal ovarian epithelia. Then we will determine whether candidate genes have acquired somatic genetic changes in primary ovarian cancers. 2. To determine the functional significance of candidate SNPs in the susceptibility regions. Bioinformatics tools will be employed to determine whether a SNP's DNA location can predict functional impact. We will also correlate SNP genotype and copy number variants (CNVs) with differential germline expression and methylation status. 3. To evaluate the role of candidate SNPs located distant from known Open Reading Frames. We expect several SNP associations to fall in "gene deserts". Bioinformatics tools will be used to predict microRNAs or distant regulatory regions, and to identify conserved elements. We will look for functional evidence of regulatory elements correlated with SNP location using chromatin immunoprecipitation and sequencing analysis (ChlP-Seq). 4. To perform detailed functional characterization of candidate genes and SNPs. We will evaluate the biological significance of candidate genes using three-dimensional culture models of ovarian cancers and normal ovaries. We will modulate their expression using cDNA or shRNA expression mediated by lentlviral transduction. Bioinformatics predictions of SNP function will be tested using specific functional assays that will depend on the nature of the candidate gene and SNP. This will include mobility shift DNA binding, reporter and DNAse I hypersensitivity assays. The knowledge gained from this large collaborative study will significantly contribute to our understanding of the functional rationale underlying genetic susceptibility and survival in women diagnosed with ovarian cancer.

Public Health Relevance

Determining the functional mechanism for genetic variants that cause ovarian cancer will improve our understanding of the underlying biology of the disease. This will also enhance the ability to identify women at greatest risk, and potentially lead to the development of more effective, individualized therapies. The studies may also inform the research community about the cellular origins of epithelial ovarian cancers, which remains an unresolved clinical and research question.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
H. Lee Moffitt Cancer Center & Research Institute
United States
Zip Code
Lawrenson, Kate; Grun, Barbara; Lee, Nathan et al. (2015) NPPB is a novel candidate biomarker expressed by cancer-associated fibroblasts in epithelial ovarian cancer. Int J Cancer 136:1390-401
Rudolph, Anja; Milne, Roger L; Truong, Thérèse et al. (2015) Investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors. Int J Cancer 136:E685-96
Feng, Ye; Stram, Daniel O; Rhie, Suhn Kyong et al. (2014) A comprehensive examination of breast cancer risk loci in African American women. Hum Mol Genet 23:5518-26
Kelemen, Linda E; Terry, Kathryn L; Goodman, Marc T et al. (2014) Consortium analysis of gene and gene-folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk. Mol Nutr Food Res 58:2023-35
Winham, Stacey J; Armasu, Sebastian M; Cicek, Mine S et al. (2014) Genome-wide investigation of regional blood-based DNA methylation adjusted for complete blood counts implicates BNC2 in ovarian cancer. Genet Epidemiol 38:457-66
Block, Matthew S; Charbonneau, Bridget; Vierkant, Robert A et al. (2014) Variation in NF-?B signaling pathways and survival in invasive epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 23:1421-7
Charbonneau, Bridget; Block, Matthew S; Bamlet, William R et al. (2014) Risk of ovarian cancer and the NF-*B pathway: genetic association with IL1A and TNFSF10. Cancer Res 74:852-61
Agarwal, D; Pineda, S; Michailidou, K et al. (2014) FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium. Br J Cancer 110:1088-100
Al Olama, Ali Amin; Kote-Jarai, Zsofia; Berndt, Sonja I et al. (2014) A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet 46:1103-9
Lindström, Sara; Thompson, Deborah J; Paterson, Andrew D et al. (2014) Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk. Nat Commun 5:5303

Showing the most recent 10 out of 33 publications