N2: PrOJect 3 Ovarian cancer is a complex disease and it is likely that multiple genes and environmental factors contribute, alone and in combination, to its etiology. While the independent effects of common genetic polymorphisms and of the accepted reproductive/lifestyle risk factors are an important part of the etiolgic puzzle, the puzzle will not be complete until the role of multi-locus effects (gene-gene interactions) and interactions between reproductive/lifestyle factors and genotype are systematically explored. The goal of this project is to implement a systematic evaluation of GxG and GxE effects that applies the most advanced analytic procedures available to the most comprehensive data set on ovarian cancer susceptibility built to date. In particular, we plan to join the individual-level genetic data at each phase of this study, assembled and maintained by Project 1, with the core epidemiolgic data maintained by the Ovarian Cancer Association Consortium (OCAC) to create an analysis data set with more than 10,000 cases and 10,000 controls informative for genetic and environmental interaction effects. Compilation of the epidemiologic data is underway.
The specific aims are as follows: 1) To evaluate gene-gene interactions using both agnostic and pathway-based approaches for each of the four largest histological subtypes;2) to evaluate gene-environment interactions, for 14 epidemiologic factors, using both agnostic and pathwaybased approaches for each of the four largest histological subtypes;3) to create a comprehensive model for absolute risk of developing ovarian cancer that incorporates family history (BRCA1/2 status), other accepted genetic and environmental factors, and those discovered (Projects 1 and 3) and functionally characterized (Project 2) by the current study.
Aims 1 and 2 share a common two-level analysis plan: a screen comprised of existing complementary methods followed by model-based evaluation of the notable interaction effects that emerge from the screen. The screen's purpose is to evaluate and coarsely prioritize as many and as diverse a set of multi-locus or multivariable GxE effects for more formal and computationally demanding multinomial response, multivariate adjusted analysis.
The Aim 3 risk model will stratify patients according to whether their risk of ovarian cancer is driven by familial susceptibility (BRCA1/2) or common epidemiological and genetic risk factors. Model building for Aim 3 will focus on specifying the latter component and incorporating G, GxG and GxE effects identified in this study.

Public Health Relevance

Ovarian cancer is a highly fatal disease for which both genetic and environmental factors play a role. To date, there are no effective screening strategies. However, oral contraceptives and prophylactic oophorectomy have been shown to be effective in preventing ovarian cancer. Therefore, identification of women at risk for ovarian cancer will likely contribute to prevention and early detection of this disease.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
H. Lee Moffitt Cancer Center & Research Institute
United States
Zip Code
Lawrenson, Kate; Grun, Barbara; Lee, Nathan et al. (2015) NPPB is a novel candidate biomarker expressed by cancer-associated fibroblasts in epithelial ovarian cancer. Int J Cancer 136:1390-401
Rudolph, Anja; Milne, Roger L; Truong, Thérèse et al. (2015) Investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors. Int J Cancer 136:E685-96
Feng, Ye; Stram, Daniel O; Rhie, Suhn Kyong et al. (2014) A comprehensive examination of breast cancer risk loci in African American women. Hum Mol Genet 23:5518-26
Kelemen, Linda E; Terry, Kathryn L; Goodman, Marc T et al. (2014) Consortium analysis of gene and gene-folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk. Mol Nutr Food Res 58:2023-35
Winham, Stacey J; Armasu, Sebastian M; Cicek, Mine S et al. (2014) Genome-wide investigation of regional blood-based DNA methylation adjusted for complete blood counts implicates BNC2 in ovarian cancer. Genet Epidemiol 38:457-66
Block, Matthew S; Charbonneau, Bridget; Vierkant, Robert A et al. (2014) Variation in NF-?B signaling pathways and survival in invasive epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 23:1421-7
Charbonneau, Bridget; Block, Matthew S; Bamlet, William R et al. (2014) Risk of ovarian cancer and the NF-*B pathway: genetic association with IL1A and TNFSF10. Cancer Res 74:852-61
Agarwal, D; Pineda, S; Michailidou, K et al. (2014) FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium. Br J Cancer 110:1088-100
Al Olama, Ali Amin; Kote-Jarai, Zsofia; Berndt, Sonja I et al. (2014) A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet 46:1103-9
Lindström, Sara; Thompson, Deborah J; Paterson, Andrew D et al. (2014) Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk. Nat Commun 5:5303

Showing the most recent 10 out of 33 publications