Our broad term objective is two-fold: to understand how extracellular RNA (exRNA) modulates the phenotype of normal cells in the tumor environment and to generate new experimental modalities that can elucidate mechanisms underlying this form of communication among cells. Specifically we will focus on understanding how exRNA released from glioblastoma cells modulates the phenotype of normal cells in the vicinity of the tumor. Our overall specific aims will encompass:
Aim 1 - Elucidation of basic molecular and cellular mechanisms of exRNA biogenesis by GBM cells, and uptake and function in normal brain cells, using existing and emerging technologies to manipulate these processes.
Aim 2 - Full characterization of the exRNA content and intracellular RNA content of human GBM cells, as well as the intracellular RNA content of normal brain cells, and evaluation of functional transfer of exRNAs from GBM cells to brain cells in culture and in GBM mouse brain models.
Aim 3 - Evaluation of transfer and fate of exRNA in brain cells, including visualizing RNA transfer in EVs, monitoring mRNA translation and miRNA functions, determining possible genomic integration of transposable elements/oncogenes, and evaluation of effects of non-coding exRNAs on status of genome methylation.
Aim 4 - Description of the dependence of exRNA cargo composition, formation and release dynamics as a function of GBM genotype, including activation of EGFR and PDGFRa signaling pathways, the two most common genetic events in human GBM tumors, as well as changes in GBM exRNA in response to radiation and drug treatment.
Aim 5 - Development of regulators and reporters of exRNA release and uptake by tailoring fluorescent and other visual labels, vectors, mouse models and reagents for broad applications in monitoring exRNA release, uptake and function in culture and in vivo.
These aims will be supported by a shared imaging core carrying our intravital imaging of extracellular vesicles and their interaction with endogenous cells in the brain.

Public Health Relevance

An insidious aspect of cancer is its ability to subvert normal cells to promote tumor growth. This process is believed to be mediated in large part through RNA vehicles released by tumor cells and taken up by normal cells. Understanding this subversive mechanism will allow development of novel therapeutic interventions to curtail cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19CA179563-01
Application #
8583509
Study Section
Special Emphasis Panel (ZRG1-OBT-S (50))
Program Officer
Howcroft, Thomas K
Project Start
2013-09-01
Project End
2018-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
1
Fiscal Year
2013
Total Cost
$1,662,087
Indirect Cost
$333,214
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
van der Vos, Kristan E; Abels, Erik R; Zhang, Xuan et al. (2016) Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro Oncol 18:58-69
Zappulli, Valentina; Friis, Kristina Pagh; Fitzpatrick, Zachary et al. (2016) Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest 126:1198-207
Wei, Zhiyun; Batagov, Arsen O; Carter, David R F et al. (2016) Fetal Bovine Serum RNA Interferes with the Cell Culture derived Extracellular RNA. Sci Rep 6:31175
Maas, Sybren L N; Breakefield, Xandra O; Weaver, Alissa M (2016) Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol :
Hall, Justin; Prabhakar, Shilpa; Balaj, Leonora et al. (2016) Delivery of Therapeutic Proteins via Extracellular Vesicles: Review and Potential Treatments for Parkinson's Disease, Glioma, and Schwannoma. Cell Mol Neurobiol 36:417-27
Pucci, Ferdinando; Garris, Christopher; Lai, Charles P et al. (2016) SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352:242-6
Laurent, Louise C; Abdel-Mageed, Asim B; Adelson, P David et al. (2015) Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. J Extracell Vesicles 4:26533
Quesenberry, Peter J; Aliotta, Jason; Camussi, Giovanni et al. (2015) Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium. J Extracell Vesicles 4:27575
Martinez, Gustavo J; Pereira, Renata M; Äijö, Tarmo et al. (2015) The transcription factor NFAT promotes exhaustion of activated CD8⁺ T cells. Immunity 42:265-78
Wong, Hon-Kit Andus; Fatimy, Rachid El; Onodera, Courtney et al. (2015) The Cancer Genome Atlas Analysis Predicts MicroRNA for Targeting Cancer Growth and Vascularization in Glioblastoma. Mol Ther 23:1234-47

Showing the most recent 10 out of 24 publications