The essential objective of the Materials Science Core is to provide well defined and specifically designed nanoparticles (NPs) that allow the objectives of the three research projects to be addressed. Although materials preparafion for any biological or toxicological study is not necessarily a simple task, the challenges of assuring that the physicochemical properties and structural arrangement of engineered NPs used for biological studies are well established at the fime of actual use are significant. It is increasingly recognized that individual NPs can be altered by the method of analysis, can change structure or chemical state in different environments, and may change as a function of time. In addition, properties of particles and collections of particles are infiuenced by aggregation, the presence of impurities and the nature of deliberate or adventitious coatings. Therefore, in addition to preparing NPs of the desired size, composition and structure, and surface chemistry, it is essential to confirm the nature of the particles at the time of use and to have an understanding of how the particle properties and particle distributions vary with time in the environments of interest. Three different oxide NPs, cerium oxide (ceria), iron oxide, and silica have been identified as the 'primary'particles to be examined in the biological studies. Members ofthe Materials Science research team have experience with the synthesis and characterization of NPforms of these three materials. Our experience with the synthesis and characterization of particles of the desired size (and size distribution), composifion and surface chemistry (or surface functionalization) will be used to achieve the goals of the Core. The team has the background and experience to design and prepare oxide NPs that will enable the PNNL U19 Program to accomplish their three research objectives;
Aim 1. Synthesize and characterize the 'primary'nanoparticles desired for biological studies with well defined physicochemical properties.
Aim 2. Design and synthesis of nanoparticles optimized for counfing and tracking in biological environments.
Aim 3. Understand the impact of different environmental conditions on the fime-dependent properties ofthe primary and coated nanoparticles.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19ES019544-03
Application #
8378140
Study Section
Special Emphasis Panel (ZES1-SET-V)
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
3
Fiscal Year
2012
Total Cost
$164,774
Indirect Cost
$31,846
Name
Battelle Pacific Northwest Laboratories
Department
Type
DUNS #
032987476
City
Richland
State
WA
Country
United States
Zip Code
99352
Wang, Yung-Chen; Engelhard, Mark H; Baer, Donald R et al. (2016) Quantifying the Impact of Nanoparticle Coatings and Nonuniformities on XPS Analysis: Gold/Silver Core-Shell Nanoparticles. Anal Chem 88:3917-25
Holland, Nathan A; Thompson, Leslie C; Vidanapathirana, Achini K et al. (2016) Impact of pulmonary exposure to gold core silver nanoparticles of different size and capping agents on cardiovascular injury. Part Fibre Toxicol 13:48
Duan, Jicheng; Kodali, Vamsi K; Gaffrey, Matthew J et al. (2016) Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function during Nanoparticle-Induced Oxidative Stress. ACS Nano 10:524-38
Baer, Donald R; Wang, Yung-Cheng; Castner, David G (2016) Use of XPS to Quantify Thickness of Coatings on Nanoparticles. Micros Today 24:40-45
Scoville, David K; White, Collin C; Botta, Dianne et al. (2015) Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains. Toxicol Appl Pharmacol 289:240-50
Szymanski, Craig J; Munusamy, Prabhakaran; Mihai, Cosmin et al. (2015) Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles. Biomaterials 62:147-54
Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H et al. (2015) Comparison of 20 nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages. Biointerphases 10:031003
Holland, N A; Becak, D P; Shannahan, Jonathan H et al. (2015) Cardiac Ischemia Reperfusion Injury Following Instillation of 20 nm Citrate-capped Nanosilver. J Nanomed Nanotechnol 6:
Teeguarden, Justin G; Mikheev, Vladimir B; Minard, Kevin R et al. (2014) Comparative iron oxide nanoparticle cellular dosimetry and response in mice by the inhalation and liquid cell culture exposure routes. Part Fibre Toxicol 11:46
Cohen, Joel M; Teeguarden, Justin G; Demokritou, Philip (2014) An integrated approach for the in vitro dosimetry of engineered nanomaterials. Part Fibre Toxicol 11:20

Showing the most recent 10 out of 26 publications