Cancer is the most commonly occurring and deadly genetically-based disease. It is increasingly being recognized that the genetic changes that bring about the transformation and progression of a normal cell to cancer, are imprinted on the genome architecture. By comprehensive characterization of the cancer genome, we can read and interpret the recorded changes with respect to the mechanisms that bring about the complete reprogramming of the normal cell into a fatal disease. Recent work has focused attention on our expanding abilities to interrogate the genome properties at ever increasing resolution, until now we arrive at the base pair level. The BCM Tumor Genome Characterization Center aims to analyze sets of tumors plus, when appropriate, matched normal tissue to characterize and enumerate the somatic changes occurring in 500 patients for each of 20-25 tumor types over the next 5 years. The characterization will be accomplished by DNA sequencing alone using the AB/SOLiD platform already in scaled-up production in the Baylor College of Medicine Human Genome Sequencing Center, the performance site for this application. The characterizations will include genome-wide expression levels with analysis of individual mRNA molecules to look for recurrent aberrant splicing and gene fusion, and eventual analysis of bi-allellic expression for heterozygous loci. We will also perform copy number variation in genomic DNA to look for recurrent amplification or deletion of genomics segments with resolution down to 10 kb, with inclusion of diTag libraries by year 3 of the grant that will enable precise breakpoint detection of insertions deletions inversions and translocations. There are two principal advantages to our proposed sequencing approach. First, it will avoid a complex transition of the program from a chip platform to a sequencing platform in the early years of the program. The complexity of transition would include expensive dismantling and reconstructing validated laboratory and informatic pipelines, and possible disruption of service. Second, sequencing data will be immediately comparable and complimentary with whole genome sequencing approaches that will be conducted in parallel by the NHGRI, in which the BCM HGSC will be a participant.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24CA143843-03
Application #
8120829
Study Section
Special Emphasis Panel (ZCA1-SRLB-U (O1))
Program Officer
Lee, Jerry S
Project Start
2009-09-29
Project End
2014-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
3
Fiscal Year
2011
Total Cost
$1,860,197
Indirect Cost
Name
Baylor College of Medicine
Department
Genetics
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Cancer Genome Atlas Research Network; Analysis Working Group: Asan University; BC Cancer Agency et al. (2017) Integrated genomic characterization of oesophageal carcinoma. Nature 541:169-175
Huo, Dezheng; Hu, Hai; Rhie, Suhn K et al. (2017) Comparison of Breast Cancer Molecular Features and Survival by African and European Ancestry in The Cancer Genome Atlas. JAMA Oncol 3:1654-1662
Robertson, A Gordon; Shih, Juliann; Yau, Christina et al. (2017) Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell 32:204-220.e15
Cancer Genome Atlas Research Network. Electronic address: wheeler@bcm.edu; Cancer Genome Atlas Research Network (2017) Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 169:1327-1341.e23
Cherniack, Andrew D; Shen, Hui; Walter, Vonn et al. (2017) Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell 31:411-423
Cancer Genome Atlas Research Network. Electronic address: elizabeth.demicco@sinaihealthsystem.ca; Cancer Genome Atlas Research Network (2017) Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 171:950-965.e28
Robertson, A Gordon; Kim, Jaegil; Al-Ahmadie, Hikmat et al. (2017) Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 171:540-556.e25
Cancer Genome Atlas Research Network; Albert Einstein College of Medicine; Analytical Biological Services et al. (2017) Integrated genomic and molecular characterization of cervical cancer. Nature 543:378-384
Farshidfar, Farshad; Zheng, Siyuan; Gingras, Marie-Claude et al. (2017) Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Rep 18:2780-2794
Fishbein, Lauren; Leshchiner, Ignaty; Walter, Vonn et al. (2017) Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell 31:181-193

Showing the most recent 10 out of 40 publications