The Metabolomics Core provides a facility to determine the phenotype of metabolite and hormone profiles of transgenic mouse models of diabetes and its complications. The services provided by the Metabolomics Core include the extraction, purification, derivatization, and instrumental analysis of metabolites, hormones, and selected enzyme activities from tissues and plasma. The methods have been scaled to account for the minimal amounts of tissues (-10 to 25 mg, and plasma volumes of - 5 to 25 pi) that can be provided by investigators.. The facility is equipped with an array of state-of-the-art instrumentation, including GC-MS, LC/MS/MS, HPLC, and NMR, providing the flexibility and resources for analyses of metabolite concentrations as well as sotopic enrichments. Metabolic panels of serum, plasma, and urine, including Chem 7, liver function tests lipid profiles, and divalent cations, are obtained using the COBAS MIRA system. We have optimized the COBAS Mira analytical system for analysis of mouse samples such that required volumes average -20 pi of serum for any combination of 4 tests. These plasma chemistry assays fill a need with very high demand for mouse studies, as reflected in our work flow over the last funding period. GC/MS and LC/MS/MS analyses provide complete profiles of chain length distribution of fatty acid metabolites, included free fatty acids, fatty acyl-CoA esters, diacylglycerols, ceramides. Other LC/MS/MS that are offered and are in high-demand include intermediates of glucose metabolism for metabolic flux measurements, and creatinines for renal clearance. The Metabolomics Core is a resource lab for the analysis of samples generated during the course of experiments of the Integrative Physiology Core at the Yale MMPC, and also provides the same array of assays to other outside investigators to assist in phenotyping of transgenic mouse models of diabetes Samples are analyzed on a fee-for-service basis with the charge per assay based on policy determined by the National MMPC Executive Committee, designed to provide substantial savings to NIH-funded users compared to commercial vendors. The Core has an active Research and Development Program to develop new analytical protocols to address new and exciting developments in the biochemistry of diabetes, obesity, and associated complications.

Public Health Relevance

The Core has an active Research and Development Program to develop new analytical protocols to address new and exciting developments in the biochemistry of diabetes, obesity, and associated complications.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24DK059635-09
Application #
8708030
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
9
Fiscal Year
2014
Total Cost
$206,054
Indirect Cost
$82,298
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Feriod, Colleen N; Oliveira, Andre Gustavo; Guerra, Mateus T et al. (2017) Hepatic Inositol 1,4,5 Trisphosphate Receptor Type 1 Mediates Fatty Liver. Hepatol Commun 1:23-35
Kory, Nora; Grond, Susanne; Kamat, Siddhesh S et al. (2017) Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism. J Lipid Res 58:226-235
Camporez, João Paulo; Wang, Yongliang; Faarkrog, Kasper et al. (2017) Mechanism by which arylamine N-acetyltransferase 1 ablation causes insulin resistance in mice. Proc Natl Acad Sci U S A 114:E11285-E11292
von Loeffelholz, Christian; Lieske, Stefanie; Neuschäfer-Rube, Frank et al. (2017) The human longevity gene homolog INDY and interleukin-6 interact in hepatic lipid metabolism. Hepatology 66:616-630
Perry, Rachel J; Peng, Liang; Cline, Gary W et al. (2017) Non-invasive assessment of hepatic mitochondrial metabolism by positional isotopomer NMR tracer analysis (PINTA). Nat Commun 8:798
Corbit, Kevin C; Camporez, João Paulo G; Tran, Jennifer L et al. (2017) Adipocyte JAK2 mediates growth hormone-induced hepatic insulin resistance. JCI Insight 2:e91001
Li, Yuwen; Caballero, Daniel; Ponsetto, Julian et al. (2017) Response of Npt2a knockout mice to dietary calcium and phosphorus. PLoS One 12:e0176232
Jelenik, Tomas; Kaul, Kirti; Séquaris, Gilles et al. (2017) Mechanisms of Insulin Resistance in Primary and Secondary Nonalcoholic Fatty Liver. Diabetes 66:2241-2253
Sun, Emily W; de Fontgalland, Dayan; Rabbitt, Philippa et al. (2017) Mechanisms Controlling Glucose-Induced GLP-1 Secretion in Human Small Intestine. Diabetes 66:2144-2149
Caballero, Daniel; Li, Yuwen; Fetene, Jonathan et al. (2017) Intraperitoneal pyrophosphate treatment reduces renal calcifications in Npt2a null mice. PLoS One 12:e0180098

Showing the most recent 10 out of 242 publications