The purpose of the Cardiovascular Pathophysiology and Complications Core (CPCC) is to provide comprehensive and reproducible screening for cardiovascular disease and complications of diabetes in genetic mouse models. Many of the mouse phenotyping tests used by this Core are largely modeled after and directly translatable to tests used to assess patients with diabetes. Other procedures are reliant on novel surgical techniques for providing stimuli to the cardiovascular system or for kidney transplantation. Core services include assessment of a) cardiac morphology and function;b) vascular regulation;c) exercise capacity and metabolic function;d) circulating markers;e) models of myocardial injury and repair;and f) vascular atherosclerosis. The range of phenotyping tests performed by the CPCC allows for thorough investigation ofthe presence, correlation with and modification or amelioration of diabetic complications associated with specific genetic manipulations in the mouse.

Public Health Relevance

Cardiovascular disease, including atherosclerosis and lipid abnormalities comprise the major morbidity and mortality in diabetes. The Cardiovascular Pathophysiology and Complications Core has a range of unique phenotyping tests for genetic mouse models that are designed to better understand the devastating complications of diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24DK059637-12
Application #
8379713
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
12
Fiscal Year
2012
Total Cost
$197,524
Indirect Cost
$70,906
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Babaev, Vladimir R; Ding, Lei; Zhang, Youmin et al. (2016) Macrophage IKKα Deficiency Suppresses Akt Phosphorylation, Reduces Cell Survival, and Decreases Early Atherosclerosis. Arterioscler Thromb Vasc Biol 36:598-607
Otero, Yolanda F; Mulligan, Kimberly X; Barnes, Tammy M et al. (2016) Enhanced Glucose Transport, but not Phosphorylation Capacity, Ameliorates Lipopolysaccharide-Induced Impairments in Insulin-Stimulated Muscle Glucose Uptake. Shock 45:677-85
Jones, Carissa P; Boyd, Kelli L; Wallace, Jeanne M (2016) Evaluation of Mice Undergoing Serial Oral Gavage While Awake or Anesthetized. J Am Assoc Lab Anim Sci 55:805-810
Li, Mingyu; Page-McCaw, Patrick; Chen, Wenbiao (2016) FGF1 Mediates Overnutrition-Induced Compensatory β-Cell Differentiation. Diabetes 65:96-109
Boortz, Kayla A; Syring, Kristen E; Lee, Rebecca A et al. (2016) G6PC2 Modulates the Effects of Dexamethasone on Fasting Blood Glucose and Glucose Tolerance. Endocrinology 157:4133-4145
Hempel, Jonathan E; Cadar, Adrian G; Hong, Charles C (2016) Development of thieno- and benzopyrimidinone inhibitors of the Hedgehog signaling pathway reveals PDE4-dependent and PDE4-independent mechanisms of action. Bioorg Med Chem Lett 26:1947-53
Ceddia, Ryan P; Lee, DaeKee; Maulis, Matthew F et al. (2016) The PGE2 EP3 Receptor Regulates Diet-Induced Adiposity in Male Mice. Endocrinology 157:220-32
Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung et al. (2016) Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol 214:197-213
Romere, Chase; Duerrschmid, Clemens; Bournat, Juan et al. (2016) Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell 165:566-79
McKenzie, Andrew J; Hoshino, Daisuke; Hong, Nan Hyung et al. (2016) KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Rep 15:978-87

Showing the most recent 10 out of 546 publications