The purpose of the Cardiovascular Pathophysiology and Complications Core (CPCC) is to provide comprehensive and reproducible screening for cardiovascular disease and complications of diabetes in genetic mouse models. Many of the mouse phenotyping tests used by this Core are largely modeled after and directly translatable to tests used to assess patients with diabetes. Other procedures are reliant on novel surgical techniques for providing stimuli to the cardiovascular system or for kidney transplantation. Core services include assessment of a) cardiac morphology and function;b) vascular regulation;c) exercise capacity and metabolic function;d) circulating markers;e) models of myocardial injury and repair;and f) vascular atherosclerosis. The range of phenotyping tests performed by the CPCC allows for thorough investigation ofthe presence, correlation with and modification or amelioration of diabetic complications associated with specific genetic manipulations in the mouse.

Public Health Relevance

Cardiovascular disease, including atherosclerosis and lipid abnormalities comprise the major morbidity and mortality in diabetes. The Cardiovascular Pathophysiology and Complications Core has a range of unique phenotyping tests for genetic mouse models that are designed to better understand the devastating complications of diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24DK059637-12
Application #
8379713
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
12
Fiscal Year
2012
Total Cost
$197,524
Indirect Cost
$70,906
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Brown, Judy J; Short, Sarah P; Stencel-Baerenwald, Jennifer et al. (2018) Reovirus-Induced Apoptosis in the Intestine Limits Establishment of Enteric Infection. J Virol 92:
Schlegel, Cameron; Lapierre, Lynne A; Weis, Victoria G et al. (2018) Reversible deficits in apical transporter trafficking associated with deficiency in diacylglycerol acyltransferase. Traffic 19:879-892
McClatchey, Penn Mason; Mignemi, Nicholas A; Xu, Zhengang et al. (2018) Automated quantification of microvascular perfusion. Microcirculation :e12482
Williams, Ian M; McClatchey, P Mason; Bracy, Deanna P et al. (2018) Acute Nitric Oxide Synthase Inhibition Accelerates Transendothelial Insulin Efflux In Vivo. Diabetes 67:1962-1975
Moore, Mary Courtney; Smith, Marta S; Farmer, Ben et al. (2018) Morning Hyperinsulinemia Primes the Liver for Glucose Uptake and Glycogen Storage Later in the Day. Diabetes 67:1237-1245
Cooke, Allison L; Morris, Jamie; Melchior, John T et al. (2018) A thumbwheel mechanism for APOA1 activation of LCAT activity in HDL. J Lipid Res 59:1244-1255
Moore, Mary Courtney; Kelley, David E; Camacho, Raul C et al. (2018) Superior Glycemic Control With a Glucose-Responsive Insulin Analog: Hepatic and Nonhepatic Impacts. Diabetes 67:1173-1181
Funkhouser-Jones, Lisa J; van Opstal, Edward J; Sharma, Ananya et al. (2018) The Maternal Effect Gene Wds Controls Wolbachia Titer in Nasonia. Curr Biol 28:1692-1702.e6
Wasserman, David H; Wang, Thomas J; Brown, Nancy J (2018) The Vasculature in Prediabetes. Circ Res 122:1135-1150
Huynh, Frank K; Hu, Xiaoke; Lin, Zhihong et al. (2018) Loss of sirtuin 4 leads to elevated glucose- and leucine-stimulated insulin levels and accelerated age-induced insulin resistance in multiple murine genetic backgrounds. J Inherit Metab Dis 41:59-72

Showing the most recent 10 out of 661 publications