The long-range objectives of the UC Davis MMPC Complications and Pathology Core are to provide detailed metabolic phenotyping of mice for the complications of diabetes and obesity. We will focus our efforts on comprehensively phenotyping macrovascular and microvascular complications of diabetes and obesity. Diabetic and obesity phenotyping complications will be accomplished through the coordinated distribution and focused analyses of mice by the leader and co-leader of the core, Drs. Rutledge and Griffey, respectively. In addition, investigators using the core will gain access to the academic portal at UC Davis for comprehensive analysis of macrovascular and microvascular complications of diabetes and obesity. Investigators participating in this core and who have essential and special capabilities to phenotype macrovascular and microvascular complications are Drs. Rutledge, Griffey, Villablanca, Huser, Jin, Chiamvimovat, Ferrara, Nolta, and Van de Water.We have developed a comprehensive list of standard cardiovascular phenotyping assays. Review ofthe current list of national MMPC assays reveals needs in some areas. The UC Davis Complications and Pathology Core will fill some of these unmet needs using novel or new state-of-the-art approaches. These standard and new state-of-the-art and novel assays will be integrated with the other cores to better understand adipocyte biology, fatty liver disease, and insulin resistance.UC Davis has existing capabilities in mouse cardiovascular anatomy, physiology, pathology, and micro imaging that are outstanding. We will capitalize upon these assets to provide sophisticated cardiovascular phenotyping to users of the MMPC. Our mission is to ensure that efficient and accurate standard and novel and new state-of-the-art assays of submitted mice are provided to users ofthe UC Davis MMPC.

Public Health Relevance

Mouse models of diabetes, diabetic complications, obesity and other related disorders have been invaluable for elucidating the disease potential, pathogenesis and treatment of these conditions in the human population. The Complications and Pathology Core will conduct procedures and analyses on mouse lines submitted to the MMPC-UCD in order to identify potentail mouse models of human disease for study.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
United States
Zip Code
Chen, Zhongyi; Guo, Lilu; Zhang, Yongqin et al. (2014) Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 124:3391-406
La Merrill, Michele; Karey, Emma; Moshier, Erin et al. (2014) Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring. PLoS One 9:e103337
Buss, Julia; Havel, Peter J; Epel, Elissa et al. (2014) Associations of ghrelin with eating behaviors, stress, metabolic factors, and telomere length among overweight and obese women: preliminary evidence of attenuated ghrelin effects in obesity? Appetite 76:84-94
de Lartigue, Guillaume; Ronveaux, Charlotte C; Raybould, Helen E (2014) Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Mol Metab 3:595-607
Yahiatène, Idir; Aung, Hnin H; Wilson, Dennis W et al. (2014) Single-molecule quantification of lipotoxic expression of activating transcription factor 3. Phys Chem Chem Phys 16:21595-601
Zhou, Peng; Hummel, Alyssa D; Pywell, Cameron M et al. (2014) High fat diet rescues disturbances to metabolic homeostasis and survival in the Id2 null mouse in a sex-specific manner. Biochem Biophys Res Commun 451:374-81
Tao, Hanlin; Zhang, Yong; Zeng, Xiangang et al. (2014) Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice. Nat Med 20:1263-9