Precise phenotyping depends significantly on the quality of animal subjects. Stable housing and husbandry minimize the influence of exogenous factors that could distort phenotyping results. Additionally, mice submitted to the UMass MMPC share space with cohorts from microbiologically diverse sources. They, as well as mice housed in resident colonies, must be protected against potential cross-infection by adventitious agents. The Animal Care Core operates under the supervision of Dr. Jerald Silverman as the Core Director, who oversees the animal care facility of UMass Medical School. The Animal Care Core provides facilities and services relevant to these priorities under the following specific aims: (1) to provide stable, biocontainment housing, husbandry and health care for mice (2) to provide a dedicated room for housing (Podl-124 of LRB) and on-site phenotyping procedures, (3) to assess the microbiological profile of each cohort and provides the Center Director with interpretation and advice regarding the results, and (4) to provide to the users ofthe phenotyping service, at the discretion ofthe Center Director, results and advice on the health status of submitted mice. The goal of the Animal Care Core is to support the operation of UMass MMPC with issues pertinent to animal care and quality of phenotyping mice.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24DK093000-02
Application #
8381202
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-05-31
Support Year
2
Fiscal Year
2012
Total Cost
$54,285
Indirect Cost
$21,285
Name
University of Massachusetts Medical School Worcester
Department
Type
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Kim, Mi-Sung; Krawczyk, Sarah A; Doridot, Ludivine et al. (2016) ChREBP regulates fructose-induced glucose production independently of insulin signaling. J Clin Invest 126:4372-4386
Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T et al. (2016) Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia. J Biol Chem 291:16221-30
Jara, Adam; Liu, Xingbo; Sim, Don et al. (2016) Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice. Endocrinology 157:1929-41
Friedline, Randall H; Ko, Hwi Jin; Jung, Dae Young et al. (2016) Genetic ablation of lymphocytes and cytokine signaling in nonobese diabetic mice prevents diet-induced obesity and insulin resistance. FASEB J 30:1328-38
Winnay, Jonathon N; Solheim, Marie H; Dirice, Ercument et al. (2016) PI3-kinase mutation linked to insulin and growth factor resistance in vivo. J Clin Invest 126:1401-12
Vernia, Santiago; Morel, Caroline; Madara, Joseph C et al. (2016) Excitatory transmission onto AgRP neurons is regulated by cJun NH2-terminal kinase 3 in response to metabolic stress. Elife 5:e10031
Min, So Yun; Kady, Jamie; Nam, Minwoo et al. (2016) Human 'brite/beige' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 22:312-8
Li, Zhu; Frey, Julie L; Wong, G William et al. (2016) Glucose Transporter-4 Facilitates Insulin-Stimulated Glucose Uptake in Osteoblasts. Endocrinology 157:4094-4103
Ejaz, Asma; Martinez-Guino, Laura; Goldfine, Allison B et al. (2016) Dietary Betaine Supplementation Increases Fgf21 Levels to Improve Glucose Homeostasis and Reduce Hepatic Lipid Accumulation in Mice. Diabetes 65:902-12
Ghanem, Simona S; Heinrich, Garrett; Lester, Sumona G et al. (2016) Increased Glucose-induced Secretion of Glucagon-like Peptide-1 in Mice Lacking the Carcinoembryonic Antigen-related Cell Adhesion Molecule 2 (CEACAM2). J Biol Chem 291:980-8

Showing the most recent 10 out of 39 publications