The Metabolomics Advanced Services Core combines capabilities for metabolomic data analysis from six metabolic laboratories located at UC Davis: the Fiehn Genome Center metabolomics laboratory (primary metabolism and complex lipids), the Hammock NIEHS superfund laboratory (eicosanoids and vitamins), the Lebrilla mass spectrometry laboratory (glycans), the Newman WHNCR laboratory (lipid mediators), the Cherry laboratory (imaging) and the Gaikwad laboratory (steroids). These methods will be available for service in Pilot &Feasibility studies and through recharge-rate fee structures. The laboratories will further advance and expand these methods for cross-platform integrated metabolomic studies. All services will be promoted by the Administrative Core, with samples to be delivered through the Central Service Core and managed by the centralized LIMS software. Advanced methods that have been automated and validated to be applicable for fast, high-quality operation will be transferred to the Central Service Core to accelerate throughput and turnaround times for regional and national clients. The Advanced Services laboratories will help with metabolomics training and pilot projects administered by the Promotion &Outreach Core. The core will provide comprehensive capabilities for metabolomic studies. Faculty and staff will collaborate with regional scientists in study design, implementation and data interpretation of metabolomic projects in clinical and preclinical studies. The core will expand the scope of its current quantification capabilities of 1,069 identified metabolite targets. Using untargeted metabolomics, the core will provide discovery services that extend to novel metabolic intermediates, followed by subsequent structural annotations and validation measurements. Secondly, the Core will advance metabolomics services and transfer methods to the Central Service Core. Scientists will develop or adapt methods to accelerate sample preparation processes by automating liquid- and solid-phase handling steps using a robotic sample handling device. Data processing steps will be optimized, and final methods will be transferred to the Central Service Core for the most robustly quantifiable sets of target metabolites. Isotope-based flux analyses will be implemented and transferred to the Central Service Core on GC-MS basis. For untargeted metabolomics, generalized retention-index marker compounds will be used to enable alignment procedures across different matrices. Image-guided mass spectrometry will open a novel field in metabolomics using fluorescently labeled metabolites and drugs for spatially targeting metabolically active zones in tissues and cell types.

Public Health Relevance

Comprehensive analysis of metabolism is critical to understand diseases such as diabetes, heart attack and stroke, or growth and progression of cancerous tumors. Development and advancement of tools enabling to establish holistic views onto bodily and cellular metabolism will help achieving this goal. The aim is to advance science and technology as well make metabolomic tools available to clinical and preclinical scientists.

Agency
National Institute of Health (NIH)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24DK097154-03
Application #
8732632
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
City
Davis
State
CA
Country
United States
Zip Code
95618
Guerrero, Andres; Lerno, Larry; Barile, Daniela et al. (2015) Top-down analysis of highly post-translationally modified peptides by Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 26:453-9
Ma, Yan; Kind, Tobias; Yang, Dawei et al. (2014) MS2Analyzer: A software for small molecule substructure annotations from accurate tandem mass spectra. Anal Chem 86:10724-31
Noto, Antonio; Fanos, Vassilios; Barberini, Luigi et al. (2014) The urinary metabolomics profile of an Italian autistic children population and their unaffected siblings. J Matern Fetal Neonatal Med 27 Suppl 2:46-52
Schuchardt, Jan Philipp; Schneider, Inga; Willenberg, Ina et al. (2014) Increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acid levels in human plasma after a single dose of long-chain omega-3 PUFA. Prostaglandins Other Lipid Mediat 109-111:23-31
Schuster, Gertrud U; Bratt, Jennifer M; Jiang, Xiaowen et al. (2014) Dietary long-chain omega-3 fatty acids do not diminish eosinophilic pulmonary inflammation in mice. Am J Respir Cell Mol Biol 50:626-36
Snowden, Stuart G; Grapov, Dmitry; Settergren, Magnus et al. (2014) High-dose simvastatin exhibits enhanced lipid-lowering effects relative to simvastatin/ezetimibe combination therapy. Circ Cardiovasc Genet 7:955-64
Ulu, Arzu; Stephen Lee, Kin Sing; Miyabe, Christina et al. (2014) An omega-3 epoxide of docosahexaenoic acid lowers blood pressure in angiotensin-II-dependent hypertension. J Cardiovasc Pharmacol 64:87-99
Ono, Emiko; Dutile, Stefanie; Kazani, Shamsah et al. (2014) Lipoxin generation is related to soluble epoxide hydrolase activity in severe asthma. Am J Respir Crit Care Med 190:886-97
Campbell, Caitlin; Grapov, Dmitry; Fiehn, Oliver et al. (2014) Improved metabolic health alters host metabolism in parallel with changes in systemic xeno-metabolites of gut origin. PLoS One 9:e84260
Cajka, Tomas; Fiehn, Oliver (2014) Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Analyt Chem 61:192-206

Showing the most recent 10 out of 31 publications