The Mayo Clinic Comprehensive Metabolomics Research Core (MCCMRC) integrates mass spectrometry and NMR Spectroscopy to measure metabolite concentrations and their in vivo dynamics using state of the art Stable isotope techniques. In addition, we propose an outreach and education program which will support feasibility studies and provide education and training opportunities to investigators wishing to utilize these techniques. The MCCMRC will expand services over those currently provided to cater the increasing needs of investigators at a regional and national level. Our services include large scale and targeted metabolomic profiling and measurement of stable isotopes in multiple metabolites, in an integrated fashion that allows us to track changes in metabolite concentration and the underlying rates of appearance and disappearance. This will enable mapping of alterations in dynamic metabolic networking in physiology as well as in pathological states. LJnique features of our program include the use of stable isotopes in diabetes, aging, cardiovascular and lipid research as well as phospometabolomic and pharmacometabolomic approaches. The program is integrated with the Proteomic, Genomic and Pharmacogenomic centers and is supported by a common Bioinformatics/biostatistics core. In addition, we are integrated closely to the major translational research programs in Mayo Clinic including the Centers of Individualized Medicine, Regenerative Medicine, Cancer, Alzheimer, Microbiome and Aging as well as the CTSA. This allows rapid translation of the findings to clinical practice thereby improving human health and patient care. The application offers an opportunity to develop networks with other national centers offering translational approaches to metabolomic technology. We will offer analytical services as well as expertise on study design, mathematical modeling, sample collection and data analysis to institutional, regional and national investigators. MCCMRC will expand our ability to offer a visiting scientists program of workshops, short-term training and didactic courses in order to educate them on the potential of metabolomics tools for research but also on the application of these techniques to their research protocols. In addition, we will leverage institutional training and career development and develop a curriculum and hands-on training program centered on metabolic training in the participating institutions. We will also offer pilot and feasibility funds to pursue innovative approaches to research based on metabolomics. The MCCMRC has an administrative core that will coordinate and integrate all activities ofthe education, training and feasibility program as well as the technology cores.

Public Health Relevance

The overall goal of the Mayo Metabolomics Program is to expand and share the state-of-the-art analytical tools, metabolomic protocols and bioinformatics and modeling expertise to the investigators in other institutions and to foster collaborative research to advance the understanding of diseases and physiology to improve human health.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BST-F (50))
Program Officer
Maruvada, Padma
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Zabielski, Piotr; Lanza, Ian R; Gopala, Srinivas et al. (2016) Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice. Diabetes 65:561-73
Kakazu, Eiji; Mauer, Amy S; Yin, Meng et al. (2016) Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner. J Lipid Res 57:233-45
Basu, Ananda; Veettil, Sona; Dyer, Roy et al. (2016) Direct Evidence of Acetaminophen Interference with Subcutaneous Glucose Sensing in Humans: A Pilot Study. Diabetes Technol Ther 18 Suppl 2:S243-7
Hinshaw, Ling; Schiavon, Michele; Dadlani, Vikash et al. (2016) Effect of Pramlintide on Postprandial Glucose Fluxes in Type 1 Diabetes. J Clin Endocrinol Metab 101:1954-62
Irving, Brian A; Wood, G Craig; Bennotti, Peter N et al. (2016) Nutrient Transporter Expression in the Jejunum in Relation to Body Mass Index in Patients Undergoing Bariatric Surgery. Nutrients 8:
Vella, Adrian; Jensen, Michael D; Nair, K Sreekumaran (2016) Eulogy for the Metabolic Clinical Investigator? Diabetes 65:2821-3
Kline, Timothy L; Irazabal, Maria V; Ebrahimi, Behzad et al. (2016) Utilizing magnetization transfer imaging to investigate tissue remodeling in a murine model of autosomal dominant polycystic kidney disease. Magn Reson Med 75:1466-73
O'Neill, Brian T; Lee, Kevin Y; Klaus, Katherine et al. (2016) Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. J Clin Invest 126:3433-46
Johnson, Matthew L; Distelmaier, Klaus; Lanza, Ian R et al. (2016) Mechanism by Which Caloric Restriction Improves Insulin Sensitivity in Sedentary Obese Adults. Diabetes 65:74-84
Savica, Rodolfo; Murray, Melissa E; Persson, Xuan-Mai et al. (2016) Plasma sphingolipid changes with autopsy-confirmed Lewy Body or Alzheimer's pathology. Alzheimers Dement (Amst) 3:43-50

Showing the most recent 10 out of 62 publications