The autophagic delivery of intracellular pathogens to the lysosome (where they are destroyed) is emerging as a central mechanism of innate immunity;accordingly, the augmentation of host autophagy represents a potentially powerful new therapeutic approach to combat intracellular pathogens1-3. In our original project, we pursued four specific aims to develop an autophagy-inducing peptide that may be useful as a novel therapeutic in the treatment of diverse intracellular NIAID Class A, B, and C Priority pathogens.
These aims i ncluded: 1. To confirm that the Tat-Beclin 1 peptide is a specific inducer of autophagy in vitro and in vivo. 2. To evaluate the mechanism by which the Tat-Beclin 1 induces autophagy. 3. To evaluate the effects of the Tat-Beclin 1 peptide on the in vitro growth of selected NIAID Category A, B, and C Priority Pathogens. 4. To evaluate the effects of the Tat-Beclin 1 peptide on microbial pathogenesis in mouse models of infection with selected NIAID Category A, B, and C Priority Pathogens. Thus far, we have completed the first aim and made significant progress towards completing Aims 2-4. To accelerate the development of a novel broad-spectrum antimicrobial biological product, the Tat-Beclin 1 autophagy-inducing peptide, we propose to work further on Aims 2-4 in parallel with investigations to determine the optimal dosing, immunogenicity, and preliminary safety profile of the peptide. These studies will help advance the development of a biologically active peptide (or small molecule compound that mimics its action) for the treatment of NIAID priority intracellular pathogens.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Medical Br Galveston
United States
Zip Code
Paterson, Andrew S; Raja, Balakrishnan; Garvey, Gavin et al. (2014) Persistent luminescence strontium aluminate nanoparticles as reporters in lateral flow assays. Anal Chem 86:9481-8
Santiago, Felix W; Covaleda, Lina M; Sanchez-Aparicio, Maria T et al. (2014) Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses. J Virol 88:4572-85
Pflughoeft, Kathryn J; Swick, Michelle C; Engler, David A et al. (2014) Modulation of the Bacillus anthracis secretome by the immune inhibitor A1 protease. J Bacteriol 196:424-35
Lavinder, Jason J; Wine, Yariv; Giesecke, Claudia et al. (2014) Identification and characterization of the constituent human serum antibodies elicited by vaccination. Proc Natl Acad Sci U S A 111:2259-64
Valbuena, Gustavo; Halliday, Hailey; Borisevich, Viktoriya et al. (2014) A human lung xenograft mouse model of Nipah virus infection. PLoS Pathog 10:e1004063
Nieves, Wildaliz; Petersen, Hailey; Judy, Barbara M et al. (2014) A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis. Clin Vaccine Immunol 21:747-54
Gardner, Christina L; Hritz, Jozef; Sun, Chengqun et al. (2014) Deliberate attenuation of chikungunya virus by adaptation to heparan sulfate-dependent infectivity: a model for rational arboviral vaccine design. PLoS Negl Trop Dis 8:e2719
Litvinov, Julia; Hagström, Anna E V; Lopez, Yubitza et al. (2014) Ultrasensitive immuno-detection using viral nanoparticles with modular assembly using genetically-directed biotinylation. Biotechnol Lett 36:1863-8
Caro-Gomez, Erika; Gazi, Michal; Goez, Yenny et al. (2014) Discovery of novel cross-protective Rickettsia prowazekii T-cell antigens using a combined reverse vaccinology and in vivo screening approach. Vaccine 32:4968-76
Georgiou, George; Ippolito, Gregory C; Beausang, John et al. (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32:158-68

Showing the most recent 10 out of 303 publications