Poly-N-acetyl glucosamine (PNAG) is a 0-1-6 linked surface polysaccharide that is expressed by a broad range of bacterial pathogens, including Staphylococcus aureus, Escherichia coli, and Yersinia pestis. It has high potential to be a widely protective vaccine against a diverse array of pathogens, but specific glycoforms, notably ones lacking acetate substituents on the amino groups of the glucosamine monosaccharide are needed to produce optimal immunity. Additionally, active and passive vaccination strategies targeting PNAG have moved into early clinical development, but the utility of this antigen as a single component vaccine is likely to be suboptimal, Furthermore, pathogen-derived PNAG antigen may be suboptimal for synthesizing vaccines that elicit the most effective protective antibody response. Finally, producing conjugate vaccines using an array of different carrier proteins can be time consuming and expensive. To address these issues, synthetic oligoglucosamine glycoforms will be produced that can be easily stored and readily conjugated to a variety of recombinant carrier proteins derived from targeted pathogens. These vaccines will be evaluated for engendering protection against methicillin-resistant S. aureus (MRSA), enterohemorrhagic E. coli (EHEC) O157 and similar Shiga toxin (STX)-prpducing strains, and Y. pestis. Moreover, these PNAG-based vaccines will also be evaluated for the ability to prevent mucpsal colonization as well as pneumonia, two critical interventions that have not yet been tested. PNAG-based conjugate vaccines will be paired with recombinant proteins specific to each of the pathogens to determine if additive, synergistic or possibly even inhibitory immune effects can be engendered by multicomponent preparations. Conjugate vaccines for MRSA will contain synthetic PNAG oligosaccharides plus capsular polysaccharide types 5 (CP5) and 8 (CP8). Carrier protein antigens will include those that contribute to protective immunity, such as alpha-hemolysin toxoid (Hla) or clumping factor B (ClfB). Vaccines for EHEC will include conjugates of synthetic PNAG oligosaccharides and STX. Synthetic PNAG oligoglucosamines conjugated to LcrV, F1 capsule or a fusion protein of these will be used to target Y. pestis. We will investigate the type of immune effectors generated by immunization and evaluate their functionality for the prevention of mucosal colonization and infection by these pathogenic bacteria.

Public Health Relevance

Effective vaccines were the most successful public health development of the 20th century. This project will continue progress into the 21st century by evaluating vaccines for significant human pathogens, including Staphylococcus aureus, food-borne E. coli and infections caused by the plague bacillus, Yersinia pestis. These bacteria share a structure on their surface that is being tested as a vaccine that could be effective against these, as well as other, serious bacterial infections.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
United States
Zip Code
Carocci, Margot; Hinshaw, Stephen M; Rodgers, Mary A et al. (2015) The bioactive lipid 4-hydroxyphenyl retinamide inhibits flavivirus replication. Antimicrob Agents Chemother 59:85-95
Lu, Xi; Skurnik, David; Pozzi, Clarissa et al. (2014) A Poly-N-acetylglucosamine-Shiga toxin broad-spectrum conjugate vaccine for Shiga toxin-producing Escherichia coli. MBio 5:e00974-14
Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi et al. (2014) Analysis of the highly diverse gene borders in Ebola virus reveals a distinct mechanism of transcriptional regulation. J Virol 88:12558-71
Derbyshire, Emily R; Min, Jaeki; Guiguemde, W Armand et al. (2014) Dihydroquinazolinone inhibitors of proliferation of blood and liver stage malaria parasites. Antimicrob Agents Chemother 58:1516-22
Böcking, Till; Aguet, François; Rapoport, Iris et al. (2014) Key interactions for clathrin coat stability. Structure 22:819-29
Gorla, Suresh Kumar; McNair, Nina N; Yang, Guangyi et al. (2014) Validation of IMP dehydrogenase inhibitors in a mouse model of cryptosporidiosis. Antimicrob Agents Chemother 58:1603-14
Gavrish, Ekaterina; Shrestha, Binu; Chen, Chao et al. (2014) In vitro and in vivo activities of HPi1, a selective antimicrobial against Helicobacter pylori. Antimicrob Agents Chemother 58:3255-60
Chamoun-Emanuelli, Ana M; Pécheur, Eve-Isabelle; Chen, Zhilei (2014) Benzhydrylpiperazine compounds inhibit cholesterol-dependent cellular entry of hepatitis C virus. Antiviral Res 109:141-8
Vetter, Michael L; Zhang, Zijuan; Liu, Shuai et al. (2014) Fluorescent visualization of Src by using dasatinib-BODIPY. Chembiochem 15:1317-24
Starkey, Melissa; Lepine, Francois; Maura, Damien et al. (2014) Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog 10:e1004321

Showing the most recent 10 out of 289 publications