Of the arboviruses that are NIAID Category A, B and C Priority Pathogens, approved vaccines are available only for Japanese encephalitis virus, tick-borne encephalitis virus, and yellow fever virus (YFV). Additionally, use of even the highly effective YFV17D vaccine is now being re-evaluated due to increasing reports of severe adverse events following vaccination, particularly in immunocompromised patients. There are currently no other prophylactic or therapeutic strategies approved for arbovirus diseases. Thus, we propose to investigate the utility of human (Hu) and humanized murine (MuHu) arbovirus-specific monoclonal antibodies (MAbs) as antiviral prophylactic or therapeutic reagents. Initial studies, including those in our Progress Report below, indicate that MAbs can be effective prophylactic and therapeutic agents for the encephalitic West Nile and Venezuelan equine encephalitis viruses (VEEV) in mouse models of infection. Based on these results we hypothesize that antiviral MAb prophylaxis and/or therapy using Hu- or MuHuMAbs will also be successful for the viscerotropic, Category A and C arboviruses dengue (DENV) and yellow fever (YFV). We will continue to assess the protective and therapeutic capacities of HuMAb for VEEV developed during our first grant period and will use two approaches to develop YFV and DENV2-reactive HuMAb or MuHuMAb. 1) Use new cell fusion partners, MFP2 or MFP2D cells, to prepare human hybridomas using either human peripheral blood B-cells from infection-immune persons, or human B-cells from virus-immunized, humanized mice. 2) Genetically recombine the variable regions of protective murine MAbs with the constant regions of human immunoglobulin. Protective and therapeutic capacity of these MAbs will be tested by peripheral virus challenge of outbred mice (VEEV) or inbred mice deficient in their interferon response (YFV and DENV2).
Specific aims are as follows: 1. Continue characterization and assessment of protective and therapeutic capacities of human or humanized VEEV-reactive MAbs and map the human anti-VEEV repertoire. 2. Develop HuMAbs and MuHuMAbs specific for YFV and DENV2 Eproteins. 3. Develop a new peripheral challenge animal model for YF using YFV17D vaccine in interferondeficient AG129 mice. 4. Characterize the ability of the YFV- and DENV2-reactive MuHuMAbs and HuMAbs to protect from or treat YFV and DENV2 infections in the AG129 mouse model and use the HuMAbs to map the human anti-E protein antibody repertoire. This project fits within the RMRCE Integrated Research Focus on Viral Therapeutics and will interact directly with RPs 3.1 and 1.7 and Core C.

Public Health Relevance

There are few vaccines and no antiviral therapeutics available for use in human infections with the emerging, medically important arboviruses Venezuelan equine encephalitis (VEEV), yellow fever (YFV) or dengue (DENV) viruses. This project will develop safe and effective human antibodies that can be used in preventing or curing human VEEV, YFV or DENV infections.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Colorado State University-Fort Collins
Fort Collins
United States
Zip Code
Gibson, Christopher C; Zhu, Weiquan; Davis, Chadwick T et al. (2015) Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation 131:289-99
Wang, Hong; Siddharthan, Venkatraman; Hall, Jeffery O et al. (2014) Autonomic deficit not the cause of death in West Nile virus neurological disease. Clin Auton Res 24:15-23
Scharton, Dionna; Bailey, Kevin W; Vest, Zachary et al. (2014) Favipiravir (T-705) protects against peracute Rift Valley fever virus infection and reduces delayed-onset neurologic disease observed with ribavirin treatment. Antiviral Res 104:84-92
Shives, Katherine D; Beatman, Erica L; Chamanian, Mastooreh et al. (2014) West nile virus-induced activation of mammalian target of rapamycin complex 1 supports viral growth and viral protein expression. J Virol 88:9458-71
Calvert, Amanda E; Dixon, Kandice L; Delorey, Mark J et al. (2014) Development of a small animal peripheral challenge model of Japanese encephalitis virus using interferon deficient AG129 mice and the SA14-14-2 vaccine virus strain. Vaccine 32:258-64
Richert, Laura E; Rynda-Apple, Agnieszka; Harmsen, Ann L et al. (2014) CD11cýýý cells primed with unrelated antigens facilitate an accelerated immune response to influenza virus in mice. Eur J Immunol 44:397-408
Soffler, Carl; Bosco-Lauth, Angela M; Aboellail, Tawfik A et al. (2014) Pathogenesis of percutaneous infection of goats with Burkholderia pseudomallei: clinical, pathologic, and immunological responses in chronic melioidosis. Int J Exp Pathol 95:101-19
Porta, Jason; Jose, Joyce; Roehrig, John T et al. (2014) Locking and blocking the viral landscape of an alphavirus with neutralizing antibodies. J Virol 88:9616-23
Jones-Carson, Jessica; Zweifel, Adrienne E; Tapscott, Timothy et al. (2014) Nitric oxide from IFN?-primed macrophages modulates the antimicrobial activity of ?-lactams against the intracellular pathogens Burkholderia pseudomallei and Nontyphoidal Salmonella. PLoS Negl Trop Dis 8:e3079
Phillips, Aaron T; Schountz, Tony; Toth, Ann M et al. (2014) Liposome-antigen-nucleic acid complexes protect mice from lethal challenge with western and eastern equine encephalitis viruses. J Virol 88:1771-80

Showing the most recent 10 out of 181 publications