The proposed Pacific Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research (PNWRCE) brings together a consortium of investigators with extensive expertise and basic and translational research capacity directed at a broad range of NIAID Category A-C Priority Pathogens. Our research activities are aimed at providing a deeper understanding of pathogen-host interactions;how these interactions impact innate and adaptive immune responses;and the age-related defects in immunity that lead to immunosenescence and an increased vulnerability to infectious disease. The information generated from these activities will facilitate the development of next-generation therapeutics, diagnostics, and vaccines against Category A-C Pathogens. The PNWRCE will also train young investigators for biodefense and emerging infectious disease research, foster the development of new research programs, and provide facilities and scientific support to first-line responders in the event of a national biodefense or emerging infectious disease emergency. RESEARCH THEMES The research activities of the PNWRCE are unified by two distinct but interrelated themes: The identification of age-related defects in the immune system to facilitate the development of vaccines and supplemental therapies and The use of systems biology and systems genetics approaches to define pathogen-host interactions and mechanisms of innate and adaptive immunity These themes reflect the strengths of PNWRCE investigators and are geared toward addressing significant public health needs and gaps in the current RCE program. In particular, our use of systems-level approaches and our focus on innate and adaptive immunity and immunosenescence provide new opportunities to identify targets for therapeutic intervention and enhancements to current vaccine strategies. Moreover, our research activities are designed to extend these benefits to vulnerable populations, including the aged, which represents the fastest growing segment of American society. Our focus on the host side of pathogen-host interactions will allow us to discover new cellular targets for antiviral products that are less likely to be sensitive to escape through pathogen mutation and more likely to have a broad spectrum of action. As outlined in the NIAID Strategic Plan for Biodefense Research (2007 Update), the development of broad-spectrum drugs, particularly antivirals, is an NIAID priority. The development of broad-spectrum platforms is also encouraged, and we will generate and make available an innovative mouse systems genetics platform that can be used to identify host susceptibility alleles to a variety of pathogens. The broad-spectrum strategy recognizes the expanding range of biological threats and the need for a more responsive biodefense capability. In this regard, there is a pressing need for vaccines against many Category A-C Pathogens, and our research will enhance vaccine development strategies as well as provide new methods for the early evaluation of vaccine efficacy through the identification of genomic correlates of immunity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI081680-05
Application #
8436326
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
5
Fiscal Year
2013
Total Cost
$473,733
Indirect Cost
$81,890
Name
Oregon Health and Science University
Department
Type
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Smithey, Megan J; Venturi, Vanessa; Davenport, Miles P et al. (2018) Lifelong CMV infection improves immune defense in old mice by broadening the mobilized TCR repertoire against third-party infection. Proc Natl Acad Sci U S A 115:E6817-E6825
Maurizio, Paul L; Ferris, Martin T; Keele, Gregory R et al. (2018) Bayesian Diallel Analysis Reveals Mx1-Dependent and Mx1-Independent Effects on Response to Influenza A Virus in Mice. G3 (Bethesda) 8:427-445
Uhrlaub, Jennifer L; Smithey, Megan J; Nikolich-Žugich, Janko (2017) Cutting Edge: The Aging Immune System Reveals the Biological Impact of Direct Antigen Presentation on CD8 T Cell Responses. J Immunol 199:403-407
Pryke, Kara M; Abraham, Jinu; Sali, Tina M et al. (2017) A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses. MBio 8:
Bottomly, Daniel; Wilmot, Beth; McWeeney, Shannon K (2015) plethy: management of whole body plethysmography data in R. BMC Bioinformatics 16:134
Gralinski, Lisa E; Ferris, Martin T; Aylor, David L et al. (2015) Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross. PLoS Genet 11:e1005504
Okumura, Atsushi; Rasmussen, Angela L; Halfmann, Peter et al. (2015) Suppressor of Cytokine Signaling 3 Is an Inducible Host Factor That Regulates Virus Egress during Ebola Virus Infection. J Virol 89:10399-406
LaBeaud, A Desiree; Banda, Tamara; Brichard, Julie et al. (2015) High rates of o'nyong nyong and Chikungunya virus transmission in coastal Kenya. PLoS Negl Trop Dis 9:e0003436
Mirrashidi, Kathleen M; Elwell, Cherilyn A; Verschueren, Erik et al. (2015) Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection. Cell Host Microbe 18:109-21
Davis, Zoe H; Verschueren, Erik; Jang, Gwendolyn M et al. (2015) Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol Cell 57:349-60

Showing the most recent 10 out of 127 publications