N5. EDUCATION AND OUTREACH CORE N5A. CANCER SYSTEMS BIOLOGY EDUCATION AT MIT The MIT Tumor Cell Networks Center devotes high priority to training students and postdocs at the interface engaging cancer biology with computational modeling approaches. While our current faculty members are active in this emerging field, the future of cancer biology more critically depends on educating a new generation of scientists to lead advances in this field. Our strategy is to encourage student/postdoc trainees to have joint mentorship from supervisors whose core expertise straddle the computational-biological interface. We endeavor to attract students/postdocs from both molecular/cellular biology and computerscience/ engineering and place them together in joint research projects with faculty members from these two broad areas. N5B. OUTREACH The ICBP grant has had a significant impact within the MIT campus community by catalyzing interactions between the systems biology and cancer biology communities. One example of the new communication between these communities was the choice to focus the annual MIT Center for Cancer Research Symposium on the "Systems Biology of Cancer" in 2008. The program for this Symposium (with over 1,000 attendees) featured outstanding investigators from a number of institutions across the USA and Canada bringing integrative systems approaches to bear on basic and clinical science facets in fundamental understanding, diagnosis and treatment of cancer. A striking manifestation of our marrying the cancer and systems biology communities was the evolution of the MIT Center for Cancer Research into the new Koch Institute for Integrative Cancer Research - doubled in size, now including a roughly equal number of members from MIT science and engineering departments.

Agency
National Institute of Health (NIH)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA112967-10
Application #
8619598
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Zhao, Boyang; Hemann, Michael T; Lauffenburger, Douglas A (2014) Intratumor heterogeneity alters most effective drugs in designed combinations. Proc Natl Acad Sci U S A 111:10773-8
Bell, Eric L; Nagamori, Ippei; Williams, Eric O et al. (2014) SirT1 is required in the male germ cell for differentiation and fecundity in mice. Development 141:3495-504
Arneja, Abhinav; Johnson, Hannah; Gabrovsek, Laura et al. (2014) Qualitatively different T cell phenotypic responses to IL-2 versus IL-15 are unified by identical dependences on receptor signal strength and duration. J Immunol 192:123-35
Krueger, Andrew T; Kroll, Carsten; Sanchez, Edgar et al. (2014) Tailoring chimeric ligands for studying and biasing ErbB receptor family interactions. Angew Chem Int Ed Engl 53:2662-6
Beck, Jon R; Peterson, Laura B; Imperiali, Barbara et al. (2014) Quantification of protein kinase enzymatic activity in unfractionated cell lysates using CSox-based sensors. Curr Protoc Chem Biol 6:135-56
Niepel, Mario; Hafner, Marc; Pace, Emily A et al. (2014) Analysis of growth factor signaling in genetically diverse breast cancer lines. BMC Biol 12:20
Johnson, Hannah; White, Forest M (2014) Quantitative analysis of signaling networks across differentially embedded tumors highlights interpatient heterogeneity in human glioblastoma. J Proteome Res 13:4581-93
Hemann, Michael T (2014) From breaking bad to worse: exploiting homologous DNA repair deficiency in cancer. Cancer Discov 4:516-8
Buck, Lorenna D; Inman, S Walker; Rusyn, Ivan et al. (2014) Co-regulation of primary mouse hepatocyte viability and function by oxygen and matrix. Biotechnol Bioeng 111:1018-27
Morton, Stephen W; Lee, Michael J; Deng, Zhou J et al. (2014) A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Sci Signal 7:ra44

Showing the most recent 10 out of 122 publications