Microbiologists are starting to shift from a single-cell-centered view of microbes towards a more multicellular, demography-centered one, and realizing that evolution and adaptation is closely linked with the community dynamics of cells and how they interact, very much like many-body physics in fact reveals emergent phenomena. This project marries evolution biology with nanotechnology and the intellectual approach of a physicist. The physicist approach used here is two-fold: (1) To exploit a new technology developed using the techniques of physics, (2) To conduct fundamental experiments and analysis on something simple but important: bacterial evolution. Evolution is still very much a contentious subject even amongst scientists. It might be argued that that the real conflict in evolution dynamics occurs amongst higher organisms and that bacterial evolution is well understood, but we think not.

Public Health Relevance

We believe that the influence of stress in evolutionary dynamics at many levels is not well understood, even with bacteria, and that studies of bacterial evolution will lead to powerful new insights into the origins of cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143803-05
Application #
8535637
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2013
Total Cost
$703,410
Indirect Cost
$553,486
Name
Princeton University
Department
Type
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
Jung, Younghun; Decker, Ann M; Wang, Jingcheng et al. (2016) Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget 7:25698-711
Han, Weijing; Chen, Shaohua; Yuan, Wei et al. (2016) Oriented collagen fibers direct tumor cell intravasation. Proc Natl Acad Sci U S A 113:11208-11213
Yumoto, Kenji; Eber, Matthew R; Wang, Jingcheng et al. (2016) Axl is required for TGF-β2-induced dormancy of prostate cancer cells in the bone marrow. Sci Rep 6:36520
Piotrowski-Daspit, Alexandra S; Tien, Joe; Nelson, Celeste M (2016) Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin. Integr Biol (Camb) 8:319-31
Gascard, Philippe; Tlsty, Thea D (2016) Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev 30:1002-19
Amend, Sarah R; Roy, Sounak; Brown, Joel S et al. (2016) Ecological paradigms to understand the dynamics of metastasis. Cancer Lett 380:237-42
van der Toom, Emma E; Verdone, James E; Pienta, Kenneth J (2016) Disseminated tumor cells and dormancy in prostate cancer metastasis. Curr Opin Biotechnol 40:9-15
Amend, Sarah R; Valkenburg, Kenneth C; Pienta, Kenneth J (2016) Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation. J Vis Exp :
Lee, Eunsohl; Wang, Jingcheng; Yumoto, Kenji et al. (2016) DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia 18:553-66
Pan, Deng; Roy, Somdutta; Gascard, Philippe et al. (2016) SOX2, OCT3/4 and NANOG expression and cellular plasticity in rare human somatic cells requires CD73. Cell Signal 28:1923-1932

Showing the most recent 10 out of 84 publications