Core 1 will provide an In silico framework (i) for modeling the systemic administration of therapeutic agents to solid tumors, their transport properties, and their efficacy in controlling tumor growth and (ii) for the 'rational design'of injectable nano-sized particulate systems (nPSs). The mathematical tools will be multi-scale and multi-physics spanning from the analysis of particulate transport within the vascular compartment (sovracellular level, >10 um), to the adhesive interactions with the vascular walls and macrophages/Kuppfer cells within the liver sinusoids (cellular level, >1 um and <10 um);to the passive translocation across the vascular endothelium and Gl epithelial layers (sub-cellular level, <1 um), down to the cellular internalization and intracellular transport (sub-cellular level, ? 1 um). This core is composed by modules, highly integrated one with the other the other core. Core 1 is co-lead by Drs. Cristini and Decuzzi with the collaboration of Dr. Ferrari and Dr. Macklin. Dr. Cristini (Ph.D. Chemical Engineering, FAAN) is an Associate Professor of Biomedical Engineering and Health Information Sciences at the University of Texas Health Science Center and provides multiscale modeling expertise. Dr. Decuzzi (Ph.D. Mechanical Engineering) is an Associate Professor of Mechanical and Biomedical Engineering at the University of Texas Health Science Center and the Center for Bio/Nanotechnology and Engineering for Medicine at the University of Magna Graecia (In Italy). Dr. Ferrari (Ph.D. Mechanical Engineering) is professor of Professor and Director of the Division of Nanomedicine and Professor of Internal Medicine in the Cardiology Division of The University of Texas Health Science Center, Deputy Chairman of the Department of Biomedical Engineering at the University of Texas. Dr. Macl

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Methodist Hospital Research Institute
United States
Zip Code
Pandolfi, Laura; Minardi, Silvia; Taraballi, Francesca et al. (2016) Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering. J Tissue Eng 7:2041731415624668
Ware, Matthew J; Keshishian, Vazrik; Law, Justin J et al. (2016) Generation of an in vitro 3D PDAC stroma rich spheroid model. Biomaterials 108:129-42
Lapin, Norman A; Krzykawska-Serda, Martyna; Ware, Matthew J et al. (2016) Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields. Cancer Nanotechnol 7:5
Tanei, Tomonori; Leonard, Fransisca; Liu, Xuewu et al. (2016) Redirecting Transport of Nanoparticle Albumin-Bound Paclitaxel to Macrophages Enhances Therapeutic Efficacy against Liver Metastases. Cancer Res 76:429-39
McConnell, Kellie I; Shamsudeen, Sabeel; Meraz, Ismail M et al. (2016) Reduced Cationic Nanoparticle Cytotoxicity Based on Serum Masking of Surface Potential. J Biomed Nanotechnol 12:154-64
Scott, Bronwyn; Shen, Jianliang; Nizzero, Sara et al. (2016) A pyruvate decarboxylase-mediated therapeutic strategy for mimicking yeast metabolism in cancer cells. Pharmacol Res 111:413-21
Mi, Yu; Mu, Chaofeng; Wolfram, Joy et al. (2016) A Micro/Nano Composite for Combination Treatment of Melanoma Lung Metastasis. Adv Healthc Mater 5:936-46
Corbo, Claudia; Molinaro, Roberto; Parodi, Alessandro et al. (2016) The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond) 11:81-100
Liu, Zongbin; Han, Xin; Qin, Lidong (2016) Recent Progress of Microfluidics in Translational Applications. Adv Healthc Mater 5:871-88
Leonard, Fransisca; Godin, Biana (2016) 3D In Vitro Model for Breast Cancer Research Using Magnetic Levitation and Bioprinting Method. Methods Mol Biol 1406:239-51

Showing the most recent 10 out of 226 publications