PROJECT 2 will explore issues related to the progression kinetics of a primary hepatic tumor (hepatocellular carcinoma), developing a broader understanding of the biophysical barriers involved in the Radio Frequency (RF) based thermal therapy and MRI/CT imaging of HCC employing gold nanoparticles (AuNPs) and fullerene particles (nano-C60). These will include the transport of the nanoparticles towards the lesion;the sufficient and specific accumulation of the nanoparticles within the tumor cells;the heat generation upon RF activation and the heat transfer to the surrounding tissue. This goal will be achieved through an integrated process where in-vitro testing and in-vivo studies are combined with predictive in-silico mathematical models. The Team leading this project brings together a multidisciplinary expertise and is composed of Dr. Steven A. Curley and Dr. Lon Wilson as co-leaders and Dr. Paul Cherukuri as co-investigator. Dr. Curley is a Professor of Surgical Oncology at the MDACC and Professor of Mechanical Engineering and Materials Science at Rice University. Dr. Wilson has been a Professor of Chemistry at Rice University for over 30 years. He has held NSF and NIH-sponsored fellowships and has published over 150 manuscripts and book chapters. Dr. Cherukuri is an Assistant Professor within the Surgical Oncology and Experimental Therapeutics Department of the MDACC and received his Ph.D. in physical chemistry under the supervision of Nobel Laureate, Prof. Richard E. Smalley and Prof. Bruce Weisman at Rice University. Dr. Cherukuri's research focused on the synthesis, characterization and development of nanoscale diagnostic and therapeutic materials for the treatment of cancer and heart disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143837-07
Application #
8755651
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
7
Fiscal Year
2014
Total Cost
$163,685
Indirect Cost
$36,592
Name
Methodist Hospital Research Institute
Department
Type
DUNS #
185641052
City
Houston
State
TX
Country
United States
Zip Code
77030
Martinez, Jonathan O; Evangelopoulos, Michael; Bhavane, Rohan et al. (2015) Multistage Nanovectors Enhance the Delivery of Free and Encapsulated Drugs. Curr Drug Targets 16:1582-90
Corbo, Claudia; Parodi, Alessandro; Evangelopoulos, Michael et al. (2015) Proteomic Profiling of a Biomimetic Drug Delivery Platform. Curr Drug Targets 16:1540-7
Singh, Jaykrishna; Hussain, Fazle; Decuzzi, Paolo (2015) Role of differential adhesion in cell cluster evolution: from vasculogenesis to cancer metastasis. Comput Methods Biomech Biomed Engin 18:282-92
Wang, Zhihui; Butner, Joseph D; Kerketta, Romica et al. (2015) Simulating cancer growth with multiscale agent-based modeling. Semin Cancer Biol 30:70-8
Jaganathan, Hamsa; Mitra, Sucharita; Srinivasan, Srimeenakshi et al. (2014) Design and in vitro evaluation of layer by layer siRNA nanovectors targeting breast tumor initiating cells. PLoS One 9:e91986
Yang, Yong; Wolfram, Joy; Fang, Xiaohong et al. (2014) Polyarginine induces an antitumor immune response through binding to toll-like receptor 4. Small 10:1250-4
Koshkina, Nadezhda V; Briggs, Katrina; Palalon, Flavio et al. (2014) Autophagy and enhanced chemosensitivity in experimental pancreatic cancers induced by noninvasive radiofrequency field treatment. Cancer 120:480-91
Martinez, Jonathan O; Evangelopoulos, Michael; Karun, Vivek et al. (2014) The effect of multistage nanovector targeting of VEGFR2 positive tumor endothelia on cell adhesion and local payload accumulation. Biomaterials 35:9824-32
Gonzalez-Villasana, Vianey; Rodriguez-Aguayo, Cristian; Arumugam, Thiruvengadam et al. (2014) Bisphosphonates inhibit stellate cell activity and enhance antitumor effects of nanoparticle albumin-bound paclitaxel in pancreatic ductal adenocarcinoma. Mol Cancer Ther 13:2583-94
Koay, Eugene J; Truty, Mark J; Cristini, Vittorio et al. (2014) Transport properties of pancreatic cancer describe gemcitabine delivery and response. J Clin Invest 124:1525-36

Showing the most recent 10 out of 114 publications