Existing mRNA quantification methods As it is becoming increasingly apparent that gene expression in individuai cells deviates substantially from the average behavior of cell populations (Raj and van Oudenaarden, 2008), new methods that provide accurate integer counts of mRNA copy numbers in individual cells are needed. Ideally, such methods should also reveal the intracellular locations of the mRNAs, as mRNA localization is often used by cells to spatially restrict the activity of RNA binding proteins (St Johnston, 2005). One of the methods sensitive enough to detect single mRNA molecules is the MS2 mRNA detection technique developed simultaneously by the Bloom laboratory (Beach et al., 1999) and Robert Singer and colleagues (Bertrand et al., 1998). In this method, a gene is engineered to transcribe an mRNA containing many copies of a specific RNA hairpin in its untranslated region, each of which binds tightly to the coat protein of the bacteriophage MS2. This gene is then expressed in a cell that already expresses the MS2 coat protein fused to GFP. When many of the MS2-GFP proteins bind to an individual mRNA, enough fluorescent signal is generated that the individual mRNAs are detectable as diffraction limited spots using conventional fluorescence microscopy, allowing one to count the number of mRNAs in single cells. Although this technique provides quantitative and spatial information about mRNAs, its use is hindered by two substantial limitations: first, the target organism needs to be genetically modified;and second, detection of more than one mRNA species is impossible. Additionally, adding the tandem MS2 binding sites signiflcantly changes the RNA stability and the MS2-GFP fusion proteins tends to aggregate in large clusters hindering the detection of single molecules.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
United States
Zip Code
Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda et al. (2014) Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep 6:514-27
Semrau, Stefan; Crosetto, Nicola; Bienko, Magda et al. (2014) FuseFISH: robust detection of transcribed gene fusions in single cells. Cell Rep 6:18-23
Knouse, Kristin A; Wu, Jie; Whittaker, Charles A et al. (2014) Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc Natl Acad Sci U S A 111:13409-14
Mizuguchi, Takeshi; Fudenberg, Geoffrey; Mehta, Sameet et al. (2014) Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516:432-5
Barreca, A; Martinengo, C; Annaratone, L et al. (2014) Inter- and intratumoral heterogeneity of BCL2 correlates with IgH expression and prognosis in follicular lymphoma. Blood Cancer J 4:e249
McFarland, Christopher D; Mirny, Leonid A; Korolev, Kirill S (2014) Tug-of-war between driver and passenger mutations in cancer and other adaptive processes. Proc Natl Acad Sci U S A 111:15138-43
Mentink, Remco A; Middelkoop, Teije C; Rella, Lorenzo et al. (2014) Cell intrinsic modulation of Wnt signaling controls neuroblast migration in C. elegans. Dev Cell 31:188-201
Polak, Paz; Lawrence, Michael S; Haugen, Eric et al. (2014) Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair. Nat Biotechnol 32:71-5
Almendro, Vanessa; Kim, Hee Jung; Cheng, Yu-Kang et al. (2014) Genetic and phenotypic diversity in breast tumor metastases. Cancer Res 74:1338-48
Slavov, Nikolai; Budnik, Bogdan A; Schwab, David et al. (2014) Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis. Cell Rep 7:705-14

Showing the most recent 10 out of 48 publications