The Center on the Microenvironment and Metastasis will be operated as a Multi-Institutional Interdisciplinary Research Center managed by Cornell University using established mechanisms and an experienced financial, administration and technical support staff. Our PS-OC organization will incorporate successful process management procedures developed at Cornell. Existing administrative structures and resources, shared research faciiities and underlying technological capabilities will be utilized for this new PS-OC enterprise targeted toward cancer research, Cornell University will be the lead institution of our Center on the Microenvironment and Metastasis. The university has a strong tradition of multi-institutional research organizations and PS-OC faculty and staff will build on this to establish a PS-OC organization that will quickly and effectively support and enhance the research projects of the Center. Our Center will include leaders in the fields of physics, nanobiotechnology, nanotechnology and biomedical engineering at Cornell. Leaders in cancer biology research from V /eill Cornell Medical College in New York City will play a critical role in our Center, as will colleagues at the State University of New Yorkat Buffalo. The Center Advisory Committee will assess overall progress in research, education, and implementation, and partnership development. This assessment will be set in the context of each committee member's area of expertise, as these members collectively will represent the core areas of the center. Key recommendations for future development of the Center will be decided upon by this group, and reports from their meetings will be shared with the Center Director and the Executive Committee We recognize the important role the Physical Sciences-Oncology Centers Steering Committee (PSC) will play in the success of the PS-OC network. Our Center will be represented on this committee by Harold Craighead (Pi/Director) and Barbara Hempstead (senior co-investigator/Co-Director). Our PS-OC representatives on this committee will bring detailed knowledge of progress in our Center's research projects that will enable them to propose and promote collaborations with colleagues at other PS-OCs through trans-Network projects.

Public Health Relevance

This PS-OC brings together expert teams from the fields of physics, nano and microfabrication, engineering and cancer biology to develop novel trans-disciplinary approaches to better understand the complexity of cancer metastasis, the aspect of cancer that directly leads to patient morbidity and mortality. Approaches developed by physical scientists will be focused on the study of cancer. Our studies aim to identify novel mechanisms used by cancer cells, but not normal cells, for growth and metastasis to distant body sites. These new mechanism provide novel drug targets, that aim towards arresting cancer metastasis.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cornell University
United States
Zip Code
Cao, Xuan; Moeendarbary, Emad; Isermann, Philipp et al. (2016) A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration. Biophys J 111:1541-1552
McCoy, Michael G; Seo, Bo Ri; Choi, Siyoung et al. (2016) Collagen I hydrogel microstructure and composition conjointly regulate vascular network formation. Acta Biomater 44:200-8
Denais, Celine M; Gilbert, Rachel M; Isermann, Philipp et al. (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352:353-8
Duncan, Sara M; Seigel, Gail M (2016) High-contrast enzymatic immunohistochemistry of pigmented tissues. J Biol Methods 3:
Seigel, G M; Sharma, S; Hackam, A S et al. (2016) HER2/ERBB2 immunoreactivity in human retinoblastoma. Tumour Biol 37:6135-42
Chandrasekaran, Siddarth; Chan, Maxine F; Li, Jiahe et al. (2016) Super natural killer cells that target metastases in the tumor draining lymph nodes. Biomaterials 77:66-76
Wang, Suming; Blois, Anna; El Rayes, Tina et al. (2016) Development of a prosaposin-derived therapeutic cyclic peptide that targets ovarian cancer via the tumor microenvironment. Sci Transl Med 8:329ra34
Hall, Matthew S; Alisafaei, Farid; Ban, Ehsan et al. (2016) Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc Natl Acad Sci U S A 113:14043-14048
Bordeleau, Francois; Chan, Bryan; Antonyak, Marc A et al. (2016) Microvesicles released from tumor cells disrupt epithelial cell morphology and contractility. J Biomech 49:1272-9
Levin, Michael; Klar, Amar J S; Ramsdell, Ann F (2016) Introduction to provocative questions in left-right asymmetry. Philos Trans R Soc Lond B Biol Sci 371:

Showing the most recent 10 out of 183 publications