We are convinced that the diverse perspectives and techniques developed by physical and quantitative scientists can make a significant impact on cancer management and treatment in potentially revolutionary ways. This proposal is centered on our strong belief that diverse physical measurements at multiple scales from molecular to organismic need to be integrated with sophisticated and diverse modeling approaches to generate a model of cancer that can be used predict the behavior of cancers during emergence and in response to perturbation. Our primary hypothesis is that multi-scale measurement and modeling will allow specific cases of cancer to be modeled with sufficient fidelity to estimate'the relative probable efficacy of alternative therapies (rationally integrating genotype, tumor environment and treatment parameters to predict outcome). Our strategy presupposes that analyses of specific properties at the molecular-cell, tumor and host levels when integrated in an appropriate modeling framework can inform therapeutic response. The consortium that has committed to this project is a group of investigators with widely diverse expertise and a common vision to develop and to apply physical sciences approaches to the study of cancer. This proposal describes the development of an integrated virtual cancer model that Incorporates a molecular-cellular model (RP1), a cancer cell evolutionary model of tumor heterogeneity (RP2), a whole tumor model with physically relevant spatial parameters to model tumor micro-environment and interaction with vasculature (RP3), and, lastly, a host model that aims to model physiological, immune and metabolic responses to tumor growth (RP4). These models will be built upon a unique synchronized dataset wherein a suite of novel measurement platforms are applied to a common set of samples from clinically relevant model systems testing therapeutic response of acute myelogenous leukemia (AML) and non-Hodgkins lymphoma (NHL) to standard cytotoxic therapy.

Public Health Relevance

Clinical tools to accurately describe, evaluate and predict an individual's response to cancer therapy are a field-wide priority. Through our virtual cancer, we anticipate it will become possible to take a small number of measurements from a patient, input those measurements as calibrants to our virtual cancer and then simulate the growth and response to therapy of the patient.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (O1))
Program Officer
Hanlon, Sean E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Southern California
Internal Medicine/Medicine
Schools of Medicine
Los Angeles
United States
Zip Code
Wang, Zhihui; Butner, Joseph D; Kerketta, Romica et al. (2015) Simulating cancer growth with multiscale agent-based modeling. Semin Cancer Biol 30:70-8
Renfrew, P Douglas; Craven, Timothy W; Butterfoss, Glenn L et al. (2014) A rotamer library to enable modeling and design of peptoid foldamers. J Am Chem Soc 136:8772-82
Bendall, Sean C; Davis, Kara L; Amir, El-Ad David et al. (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157:714-25
Gaudillière, Brice; Fragiadakis, Gabriela K; Bruggner, Robert V et al. (2014) Clinical recovery from surgery correlates with single-cell immune signatures. Sci Transl Med 6:255ra131
Wu, Min; Frieboes, Hermann B; Chaplain, Mark A J et al. (2014) The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems. J Theor Biol 355:194-207
Bruggner, Robert V; Bodenmiller, Bernd; Dill, David L et al. (2014) Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A 111:E2770-7
Angelo, Michael; Bendall, Sean C; Finck, Rachel et al. (2014) Multiplexed ion beam imaging of human breast tumors. Nat Med 20:436-42
Holman, Jerry D; Tabb, David L; Mallick, Parag (2014) Employing ProteoWizard to Convert Raw Mass Spectrometry Data. Curr Protoc Bioinformatics 46:13.24.1-9
Wang, Zhihui; Deisboeck, Thomas S; Cristini, Vittorio (2014) Development of a sampling-based global sensitivity analysis workflow for multiscale computational cancer models. IET Syst Biol 8:191-7
Lao, Brooke Bullock; Drew, Kevin; Guarracino, Danielle A et al. (2014) Rational design of topographical helix mimics as potent inhibitors of protein-protein interactions. J Am Chem Soc 136:7877-88

Showing the most recent 10 out of 59 publications