Our overall goal is to develop an integrative, multidisciplinary research program that applies mathematical methods to the investigation of problem in tumor biology and clinical oncology. The great challenge - both intellectually and educationally - is to integrate biological data and mathematical models into a conceptual framework that can encompass observable cellular and extracellular dynamics in tumor biology. To achieve this goal the following specific aims will be pursued during the life-time of the planning grant: Project 1: Escape from Homeostasis: Integrated mathematical and experimental investigation of carcinogenesis will focus on tumor cell initiation promotion and progression with particular focus on the interactions of the evolving tumor populations with elements of the microenvironment. Most of this corresponding experimental work will be in-vitro. Project 2 : The Physiological Microenvironment and its role in Tumor Invasion and Metastases will focus on the mutual interactions of cancer cell phenotypic evolution with the tumor microenvironment including fibroblasts, blood vessels, and physical parameters such as oxygen, glucose and H" concentrations. The corresponding empirical research will be largely carried out in-vivo particularly using window chambers. Project 3: Environment-driven Mathematical modeling for Clinical Cancer imaging will focus on the challenge modeling tumor growth and response to therapy in an environment in which imaging resolution is restricted to a few mm and temporal variations obtainable only through occasional imaging sessions. n each project the research will be carried out by a team of mathematicians and experimentalists and will focus on system dynamics, particularly on the mutually interactions of tumor phenotypic evolution and the changing microenvironment.

Public Health Relevance

Relevance We propose that Cancer is a dynamic complex multiscale system that can only truly be understood via the integration of theory and experiments. The goal of the proposal is to use such an integrated approach to better understand, predict and treat cancer

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143970-04
Application #
8326757
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (O1))
Program Officer
Moore, Nicole M
Project Start
2009-09-30
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
4
Fiscal Year
2012
Total Cost
$1,876,782
Indirect Cost
$669,281
Name
H. Lee Moffitt Cancer Center & Research Institute
Department
Type
DUNS #
139301956
City
Tampa
State
FL
Country
United States
Zip Code
33612
Adair, Jennifer E; Johnston, Sandra K; Mrugala, Maciej M et al. (2014) Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients. J Clin Invest 124:4082-92
Kam, Yoonseok; Das, Tuhin; Minton, Susan et al. (2014) Evolutionary strategy for systemic therapy of metastatic breast cancer: balancing response with suppression of resistance. Womens Health (Lond Engl) 10:423-30
Baldock, Anne L; Ahn, Sunyoung; Rockne, Russell et al. (2014) Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS One 9:e99057
Gatenby, R A; Cunningham, J J; Brown, J S (2014) Evolutionary triage governs fitness in driver and passenger mutations and suggests targeting never mutations. Nat Commun 5:5499
Lloyd, Mark C; Alfarouk, Khalid O; Verduzco, Daniel et al. (2014) Vascular measurements correlate with estrogen receptor status. BMC Cancer 14:279
McGillen, Jessica B; Gaffney, Eamonn A; Martin, Natasha K et al. (2014) A general reaction-diffusion model of acidity in cancer invasion. J Math Biol 68:1199-224
Kim, MunJu; Rejniak, Katarzyna A (2014) Mechanical aspects of microtubule bundling in taxane-treated circulating tumor cells. Biophys J 107:1236-46
Scott, Jacob G; Fletcher, Alexander G; Maini, Philip K et al. (2014) A filter-flow perspective of haematogenous metastasis offers a non-genetic paradigm for personalised cancer therapy. Eur J Cancer 50:3068-75
Bailey, Kate M; Wojtkowiak, Jonathan W; Cornnell, Heather H et al. (2014) Mechanisms of buffer therapy resistance. Neoplasia 16:354-64.e1-3
Baldock, Anne L; Yagle, Kevin; Born, Donald E et al. (2014) Invasion and proliferation kinetics in enhancing gliomas predict IDH1 mutation status. Neuro Oncol 16:779-86

Showing the most recent 10 out of 61 publications