Project 2: Therapeutic Targeting of the Ras Pathway by Nanoparticle Delivery of siRNA Three types of nanoparticles, i.e. LPD, LCP and PRINT, will be used to deliver siRNA to lung cancer cells in a genetically engineered mouse (GEM) model (Kim, co-PI). LPD is a self-assembled, core/membrane nanoparticle, the unique feature of which is the high density ofthe surface grafted PEG chains. Previous work by Huang (co-PI) has shown that LPD accumulates in xenografted human lung tumors at the level of 60-80 % injected dose per g of tissue with minimal uptake by liver and spleen. Three daily i.v. injections of LPD containing siRNA effectively silenced the tumor target gene expression. LCP is similar in structure to LPD, but the core is replaced with calcium phosphate amorphous nanoprecipltate that dissolves in the endosomal acidic pH to release its cargo and swells and bursts the endosomes. The PRINT (DeSimone, co-1) are topdown manufactured nanoparticles In which any carrier and cargo materials can be readily loaded. Dr. DeSimone has shown that siRNA can be successfully loaded in PRINT and delivered to tumor cells for gene silencing. A salient feature of the project is the KRas driven lung cancer GEM. sIRNAs designed against Ras and Ras effector pathways will be tested and delivered as therapeutics. This is particularly significant, because Ras is considered an undruggable target by conventional medicinal chemistry approaches. Furthermore, gemcitabine mono (or di-) phosphate (GMP or GDP), metabolites of gemcitabine will be formulated in LCP nanoparticles and delivered to the tumor cells by itself or together with siRNA. This is a novel approach that takes advantage of the large cargo capacity of these nanoparticles. The project is milestone driven in that by the end of the year 3, at least one nanoparticle formulation will be identified for therapy, pharmacokinetics and toxicity studies In GEM. The formulation should be ready for detailed characterization and toxicity studies in collaboration with Nanotechnology Characterization Lab at NCI for further translational development.

Public Health Relevance

Lung cancer Is a major cancer threat In human. The project will develop nanoparticle formulations for delivering siRNA and/or gemcitabine to a genetically engineered mouse model that is driven by KRas oncogene. This is a realistic approach to treat human lung cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151652-05
Application #
8711354
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$149,253
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Lucas, Andrew T; O'Neal, Sara K; Santos, Charlene M et al. (2016) A sensitive high performance liquid chromatography assay for the quantification of doxorubicin associated with DNA in tumor and tissues. J Pharm Biomed Anal 119:122-9
Kai, Marc P; Brighton, Hailey E; Fromen, Catherine A et al. (2016) Tumor Presence Induces Global Immune Changes and Enhances Nanoparticle Clearance. ACS Nano 10:861-70
Roode, Luke E; Brighton, Hailey; Bo, Tao et al. (2016) Subtumoral analysis of PRINT nanoparticle distribution reveals targeting variation based on cellular and particle properties. Nanomedicine 12:1053-62
Miao, Lei; Liu, Qi; Lin, C Michael et al. (2016) Targeting Tumor-associated Fibroblasts for Therapeutic Delivery in Desmoplastic Tumors. Cancer Res :
Li, Chengwen; Wu, Shuqing; Albright, Blake et al. (2016) Development of Patient-specific AAV Vectors After Neutralizing Antibody Selection for Enhanced Muscle Gene Transfer. Mol Ther 24:53-65
DeSimone, Joseph M; Mecham, Sue J; Farrell, Crista L (2016) Organic Polymer Chemistry in the Context of Novel Processes. ACS Cent Sci 2:588-597
Lecaros, Rumwald Leo G; Huang, Leaf; Lee, Tsai-Chia et al. (2016) Nanoparticle Delivered VEGF-A siRNA Enhances Photodynamic Therapy for Head and Neck Cancer Treatment. Mol Ther 24:106-16
Lu, Yao; Miao, Lei; Wang, Yuhua et al. (2016) Curcumin Micelles Remodel Tumor Microenvironment and Enhance Vaccine Activity in an Advanced Melanoma Model. Mol Ther 24:364-74
Sambade, Maria; Deal, Allison; Schorzman, Allison et al. (2016) Efficacy and pharmacokinetics of a modified acid-labile docetaxel-PRINT(®) nanoparticle formulation against non-small-cell lung cancer brain metastases. Nanomedicine (Lond) 11:1947-55
Rose, Tracy L; Deal, Allison M; Ladoire, Sylvain et al. (2016) Patterns of Bladder Preservation Therapy Utilization for Muscle-Invasive Bladder Cancer. Bladder Cancer 2:405-413

Showing the most recent 10 out of 158 publications