Title: Animal Imaging Core Recent advances in small animal imaging have substantially improved our ability to gain insights into disease progression without altering the biological systems. The small animal imaging facility at UNC currently houses nine major imaging equipments, including MRI (2), PET/CT (1), CT (1), SPECT (1), optical imaging (3), and ultrasound (1). In addition, skillful technical staff members to maintain and operate the imaging equipments and animal technicians to facilitate animal preparation for imaging and monitoring during imaging are available. Leveraging on these impressive resources, the small animal imaging (SAI) core aims to provide advanced imaging technology to facilitate the proposed projects. Specifically, two major imaging tasks will be carried out for the proposed projects, including to depict biodistribution of nanoparticles (Projects 1, 2, and 3) and to monitor and evaluate therapeutic efficacy of the proposed nanoparticles or treatment regimens (Projects 2, 3, and 4) using imaging methods. To accomplish the former task, both PET and optical imaging methods will be developed to more efficiently and accurately provide biodistribution information. For the latter task, four imaging modalities, including optical, CT, PET, and MRI will be used to monitor therapeutic efficacy. Finally, while the imaging capability in the small animal imaging facility is already impressive, our institution has committed additional funds to further augment the imaging program at UNC, including the establishment of an on-site cyclotron facility and the associated radiochemistry lab and the development of imaging registration approaches for multimodality imaging using microCT, MRI, and PET (Projects 2, 3 and 4). Together, we believe that the available technical expertise and well established infrastructure in the small animal imaging facility will greatly facilitate the success ofthe proposed projects.

Public Health Relevance

The SAI core will provide novel non-invasive imaging approaches for determining bio-distribution of the proposed nanoparticles and monitoring disease progression and therapeutic efficacy. In addition, image analysis tools will be developed to provide quantitative measures of biological parameters.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151652-05
Application #
8711362
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$69,025
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Lucas, Andrew T; O'Neal, Sara K; Santos, Charlene M et al. (2016) A sensitive high performance liquid chromatography assay for the quantification of doxorubicin associated with DNA in tumor and tissues. J Pharm Biomed Anal 119:122-9
Kai, Marc P; Brighton, Hailey E; Fromen, Catherine A et al. (2016) Tumor Presence Induces Global Immune Changes and Enhances Nanoparticle Clearance. ACS Nano 10:861-70
Roode, Luke E; Brighton, Hailey; Bo, Tao et al. (2016) Subtumoral analysis of PRINT nanoparticle distribution reveals targeting variation based on cellular and particle properties. Nanomedicine 12:1053-62
Miao, Lei; Liu, Qi; Lin, C Michael et al. (2016) Targeting Tumor-associated Fibroblasts for Therapeutic Delivery in Desmoplastic Tumors. Cancer Res :
Li, Chengwen; Wu, Shuqing; Albright, Blake et al. (2016) Development of Patient-specific AAV Vectors After Neutralizing Antibody Selection for Enhanced Muscle Gene Transfer. Mol Ther 24:53-65
DeSimone, Joseph M; Mecham, Sue J; Farrell, Crista L (2016) Organic Polymer Chemistry in the Context of Novel Processes. ACS Cent Sci 2:588-597
Lecaros, Rumwald Leo G; Huang, Leaf; Lee, Tsai-Chia et al. (2016) Nanoparticle Delivered VEGF-A siRNA Enhances Photodynamic Therapy for Head and Neck Cancer Treatment. Mol Ther 24:106-16
Lu, Yao; Miao, Lei; Wang, Yuhua et al. (2016) Curcumin Micelles Remodel Tumor Microenvironment and Enhance Vaccine Activity in an Advanced Melanoma Model. Mol Ther 24:364-74
Sambade, Maria; Deal, Allison; Schorzman, Allison et al. (2016) Efficacy and pharmacokinetics of a modified acid-labile docetaxel-PRINT(®) nanoparticle formulation against non-small-cell lung cancer brain metastases. Nanomedicine (Lond) 11:1947-55
Rose, Tracy L; Deal, Allison M; Ladoire, Sylvain et al. (2016) Patterns of Bladder Preservation Therapy Utilization for Muscle-Invasive Bladder Cancer. Bladder Cancer 2:405-413

Showing the most recent 10 out of 158 publications