The central hypothesis driving Project 1 is that the clinical efficacy of magnetic nanoparticle (mNP)-based cancer therapies can be substantially enhanced by precise targeting ofthe particles to cancer cells. Previous efforts using antibody and antibody fragments to target nanoparticles has yielded mixed results, and the fragmented nature ofthe related literature does not permit drawing informative conclusions that might guide future studies. To remedy this stark deficit of knowledge regarding targeting of mNP cancer therapies. Project 1 will, in a controlled fashion, conjugate genetically engineered single-chain antibody fragments (scFvs) to the surface of custom-designed mNPs. These mNP immunoconjugates will be subjected to rigorous physical, biochemical, and functional characterization. Upon establishing stringent control of mNP immunoconjugate manufacturing and characterization processes, controlled studies will systematically evaluate three key parameters believed to be critical for clinical efficacy of targeted mNP cancer therapies: (1) mNP specificity and affinity for target cells;(2) the subcellular localization of mNP upon reaching their targets;and (3) the relationship between mNP size and cellular/tumor accumulation of mNP, as assessed in two different cancer models?breast cancer and ovarian cancer.
Aim 1 will test the hypothesis that simultaneously targeting two different cancer-associated cell surface receptors with a single mNP will increase avid interactions between targeted particles and cancer cells, thereby improving specificity and biodistribution.
Aim 2 will test the hypothesis that mNPs are targeted to cancer-antigen-expressing cells more effectively by internalizing antibodies than by non-internalizing antibodies.
Aim 3 will test the hypothesis that smaller (10-20 nm) mNP immunoconjugates accumulate in antigen-expressing tumors to a higher level than larger (50-100 nm) mNP immunoconjugates. The objectives of these aims will be achieved by integrating knowledge of antibody-engineering technologies, experience with bioconjugation chemistry, and expertise with in vitro analysis of cellular mNP accumulation. The project will draw on the Nanoparticle Development, Production, and Characterization Core for mNP fabrication, on Projects 3 &4 for coordinated testing of mNP immunoconjugates in vivo, and on the Toxicology, Pathology, and Biodistribution Core and the Biostatistics, Data Analysis, and Computation Core for analysis of those in vivo results.

Public Health Relevance

The key to any cancer therapy is preferential toxicity toward malignant cells verses healthy tissue. In the context of magnetic nanoparticle therapies, it is clear that passive targeting of tumors is insufficient for practical clinical efficacy. Looking to the future, the nanotechnologist will employ genetically engineered biomolecules to precisely guide magnetic nanoparticle therapies to cancerous cells.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dartmouth College
United States
Zip Code
Reeves, Daniel B; Shi, Yipeng; Weaver, John B (2016) Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics. PLoS One 11:e0150856
Lizotte, P H; Wen, A M; Sheen, M R et al. (2016) In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol 11:295-303
Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D et al. (2016) Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy. Int J Hyperthermia 32:735-48
Tesone, Amelia J; Rutkowski, Melanie R; Brencicova, Eva et al. (2016) Satb1 Overexpression Drives Tumor-Promoting Activities in Cancer-Associated Dendritic Cells. Cell Rep 14:1774-86
Sheen, M R; Marotti, J D; Allegrezza, M J et al. (2016) Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis 5:e267
Kekalo, Katsiaryna; Shubitidze, Fridon; Meyers, Robert et al. (2016) Magnetic Heating of Fe-Co Ferrites: Experiments and Modeling. Nano Life 6:
Nemani, Krishnamurthy V; Ennis, Riley C; Griswold, Karl E et al. (2015) Magnetic nanoparticle hyperthermia induced cytosine deaminase expression in microencapsulated E. coli for enzyme-prodrug therapy. J Biotechnol 203:32-40
Rutkowski, Melanie R; Stephen, Tom L; Svoronos, Nikolaos et al. (2015) Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27:27-40
Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert et al. (2015) Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy. J Appl Phys 117:094302
Reeves, Daniel B; Weaver, John B (2015) Combined Néel and Brown rotational Langevin dynamics in magnetic particle imaging, sensing, and therapy. Appl Phys Lett 107:223106

Showing the most recent 10 out of 95 publications