Developmental activities arising within the Dartmouth CCNE (DCCNE) will be designed to (1) foster research in cancer nanotechnology;(2) facilitate interactions of oncologists at the Cancer Center with engineers and materials scientists at Thayer School of Engineering;(3) facilitate efforts by DCCNE investigators to propose studies and collaborate on projects that are made feasible by the composite capabilities of the institutions participating in The CCNE Alliance;and (4) Alliance Challenge Projects. Dartmouth has fostered pilot projects in cancer nanotechnology for more than five years, most recently funding four new projects in Fall 2009, and the staff members ofthe Administrative Core have many years experience implementing such mechanisms successfully. We anticipate rich bidirectional interactions with The Alliance members in collaborating on diverse nanotechnologies relevant to Dartmouth-initiated projects and the opportunity for interested DCCNE faculty to join in Alliance studies. We anticipate that insights from other centers in the synthesis of nanotechnology platforms, and in biocompatibility issues related to the use of nanostructures in animals will provide new opportunities for the DCCNE. In addition. Alliance-based experience in the conjugation of antibodies and targeting ligands to nanostructures can provide significant research synergies for work proposed by the DCCNE. The Dartmouth CCNE is also well positioned to collaborate productively with national resources such as the NCI Nanotechnology Characterization Laboratory and caNanoLab. The DCCNE recognizes the need for national collaborations on initiatives to advance the field of cancer nanotechnology, and the Center looks forward to contributing effort toward participating in Alliance initiatives to achieve this aim. The DCCNE Director will serve on the Alliance Coordinating and Governance Committee as representative of the Dartmouth CCNE and as a contributor to peer initiatives arising from that forum. His participation will represent the portal whereby additional DCCNE faculty can be identified as key resources for considerations on other issues of common interest across the Alliance, including such areas as clinical translation and industrial commercialization.

Public Health Relevance

Pilot awards support Innovative cancer-related nanotechnology projects that seek to stimulate interactive work likely to become self-sustaining through external funding or contribute new insights to the DCCNE. The DCCNE looks forward to proposing studies and collaborating on projects made feasible by the composite capabilities of the institutions participating in The Alliance. We anticipate the DCCNE will be able to contribute to The Alliance unique strengths in engineering and physical sciences (from Thayer faculty) and in biological and medical sciences (from DMS).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151662-05
Application #
8710057
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$208,970
Indirect Cost
$77,345
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Reeves, Daniel B; Shi, Yipeng; Weaver, John B (2016) Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics. PLoS One 11:e0150856
Lizotte, P H; Wen, A M; Sheen, M R et al. (2016) In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol 11:295-303
Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D et al. (2016) Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy. Int J Hyperthermia 32:735-48
Tesone, Amelia J; Rutkowski, Melanie R; Brencicova, Eva et al. (2016) Satb1 Overexpression Drives Tumor-Promoting Activities in Cancer-Associated Dendritic Cells. Cell Rep 14:1774-86
Sheen, M R; Marotti, J D; Allegrezza, M J et al. (2016) Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis 5:e267
Kekalo, Katsiaryna; Shubitidze, Fridon; Meyers, Robert et al. (2016) Magnetic Heating of Fe-Co Ferrites: Experiments and Modeling. Nano Life 6:
Nemani, Krishnamurthy V; Ennis, Riley C; Griswold, Karl E et al. (2015) Magnetic nanoparticle hyperthermia induced cytosine deaminase expression in microencapsulated E. coli for enzyme-prodrug therapy. J Biotechnol 203:32-40
Rutkowski, Melanie R; Stephen, Tom L; Svoronos, Nikolaos et al. (2015) Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27:27-40
Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert et al. (2015) Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy. J Appl Phys 117:094302
Reeves, Daniel B; Weaver, John B (2015) Combined Néel and Brown rotational Langevin dynamics in magnetic particle imaging, sensing, and therapy. Appl Phys Lett 107:223106

Showing the most recent 10 out of 95 publications