Organization and Functions of the Administrative Core (CAdmin). As a Principal Investigator of the proposed TCCN, Dr. Mauro Ferrari is Chairman of the Department of Nanomedicine and Biomedical Engineering (nBME). Dr. Ferrari holds concurrent faculty appointments at MDACC (tenured Full Professor, Experimental Therapeutics), Rice University (Bioengineering) and UT Austin (Biomedical Engineering), and is the President of the Alliance for NanoHealth (ANH). Dr. Ferrari is trained in mathematics, mechanical engineering and medicine. He is a recognized leader in the development and applicafion of biomedical nanotechnology. Among many awards he received. Dr. Ferrari is the recipient of the DoD CDMRP Breast Cancer Research Program's Innovator Award in 2008. Co-leading the TCCN as Principal Invesfigator is Dr. Anil K. Sood of MDACC, Professor and Director ofthe Blanton-Davis Ovarian Cancer Research Program in the Departments of Gynecologic Oncology and Cancer Biology. He is also the Director of the Center for RNA Interference and Non-Coding RNA at MDACC. Dr. Sood is a renowned physician scienfist known for his research on the systemic in vivo siRNA delivery using biocompafible nanoparticles and development of novel anti-vascular therapeufic approaches. Dr. Gabriel Lopez-Berestein Is the third Principal Investigator, and is currently Professor of Medicine and Cancer Biology, Department of Experimental Therapeutics, Division of Cancer Medicine, MDACC;Executive Director, PDC at MDACC and Adjunct Professor at Rice University (Bioengineering). Dr. Lopez-Berestein is a widely recognized expert in the field of liposomal therapeufics and in translafional research. TCCN Administrative Core will be advised by Dr. Raymond DuBois, Other Significant Contributor of TCCN and Provost/Executive Vice President of MDACC. Drs. Ferrari, Sood, and Lopez-Berestein will lead the TCCN from the perspecfives of applied nanotechnology, clinical oncology, and translational work for pharmaceutical development, respectively. Each of them has demonstrated experience to conduct and lead mulfidisciplinary research programs that bridge the physical sciences and biomedical and clinical sciences. The CAdmin led by the Pis will be assisted by a Center Manager, Dr. Jason Sakamoto, to provide leadership and general administration for all activities related to this TCCN. In particular, CAdmin is responsible for: 1) providing administrafive support to all projects and core resources of the TCCN, 2) providing administrative support to develop and manage pilot project programs (Internal pilot projects and Trans-Alliance challenge projects), 3) convening TCCN team meetings, advisory committee meetings, as well as scientific conferences and workshops, 4) supporting the participation of the TCCN in the NCI Alliance for Nanotechnology in Cancer and communicate with NCI staff, facilitate and prepare the TCCN participation in NCI evaluafion, 5) facilitafing communication with other CCNE programs, and among other administrafive and supportive funcfions, and 6) interfacing with other administrative resources (ANH and nBME) and shared core facilities in the participating institutions.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Health Science Center Houston
United States
Zip Code
Cui, Min-Hui; Branch, Craig A; Cahill, Sean M et al. (2015) In vivo proton MR spectroscopy of pancreatic neuroendocrine tumors in a multiple endocrine neoplasia type 1 conditional knockout mouse model. Magn Reson Med 74:1221-6
Bottsford-Miller, Justin; Choi, Hyun-Jin; Dalton, Heather J et al. (2015) Differential platelet levels affect response to taxane-based therapy in ovarian cancer. Clin Cancer Res 21:602-10
Sun, Yan; Hu, Limei; Zheng, Hong et al. (2015) MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. J Pathol 235:25-36
Wen, Yunfei; Graybill, Whitney S; Previs, Rebecca A et al. (2015) Immunotherapy targeting folate receptor induces cell death associated with autophagy in ovarian cancer. Clin Cancer Res 21:448-59
Previs, Rebecca A; Coleman, Robert L; Harris, Adrian L et al. (2015) Molecular pathways: translational and therapeutic implications of the Notch signaling pathway in cancer. Clin Cancer Res 21:955-61
Ozpolat, Bulent; Sood, Anil K; Lopez-Berestein, Gabriel (2014) Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev 66:110-6
Jaganathan, Hamsa; Mitra, Sucharita; Srinivasan, Srimeenakshi et al. (2014) Design and in vitro evaluation of layer by layer siRNA nanovectors targeting breast tumor initiating cells. PLoS One 9:e91986
Tang, Lei; van de Ven, Anne L; Guo, Dongmin et al. (2014) Computational modeling of 3D tumor growth and angiogenesis for chemotherapy evaluation. PLoS One 9:e83962
Yang, Yong; Wolfram, Joy; Fang, Xiaohong et al. (2014) Polyarginine induces an antitumor immune response through binding to toll-like receptor 4. Small 10:1250-4
Lee, Yeonju; Koay, Eugene J; Zhang, Weijia et al. (2014) Human equilibrative nucleoside transporter-1 knockdown tunes cellular mechanics through epithelial-mesenchymal transition in pancreatic cancer cells. PLoS One 9:e107973

Showing the most recent 10 out of 153 publications