Central to the NSBCC Mission is the ability to identify and quantitate candidate protein and miRNA biomarkers for the identification of blood-based biomarker panels and cell surface proteomes. Equally important is the ability to connect those biomarkers back to their associated signaling networks that control cellular and organ function, and that are disrupted by the onset and progression of cancer, and that determine responses or resistances to therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151819-03
Application #
8380729
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
3
Fiscal Year
2012
Total Cost
$53,700
Indirect Cost
Name
California Institute of Technology
Department
Type
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Hong, Candice Sun; Graham, Nicholas A; Gu, Wen et al. (2016) MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4. Cell Rep 14:1590-601
Poovathingal, Suresh Kumar; Kravchenko-Balasha, Nataly; Shin, Young Shik et al. (2016) Critical Points in Tumorigenesis: A Carcinogen-Initiated Phase Transition Analyzed via Single-Cell Proteomics. Small 12:1425-31
Henning, Ryan K; Varghese, Joseph O; Das, Samir et al. (2016) Degradation of Akt using protein-catalyzed capture agents. J Pept Sci 22:196-200
Clark, Andrew J; Wiley, Devin T; Zuckerman, Jonathan E et al. (2016) CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc Natl Acad Sci U S A 113:3850-4
Ghosh, Dhiman; Ulasov, Ilya V; Chen, LiPing et al. (2016) TGFβ-Responsive HMOX1 Expression Is Associated with Stemness and Invasion in Glioblastoma Multiforme. Stem Cells 34:2276-89
Wei, Wei; Shin, Young Shik; Xue, Min et al. (2016) Single-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma. Cancer Cell 29:563-73
Shin, Daniel Sanghoon; Ribas, Antoni (2015) The evolution of checkpoint blockade as a cancer therapy: what's here, what's next? Curr Opin Immunol 33:23-35
Pan, Dorothy W; Davis, Mark E (2015) Cationic Mucic Acid Polymer-Based siRNA Delivery Systems. Bioconjug Chem 26:1791-803
Xue, Min; Wei, Wei; Su, Yapeng et al. (2015) Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. J Am Chem Soc 137:4066-9
Tanaka, Kazuhiro; Sasayama, Takashi; Irino, Yasuhiro et al. (2015) Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest 125:1591-602

Showing the most recent 10 out of 50 publications