NSBCC education &training programs are designed to bring cancer researchers together with physical scientists and technologists in order to expedite the develoment of new and effective tools for fighting cancer. Our goal is to have student and postdoctoral researchers who understand the cancer biology or clinical oncology problem, can participate in technology invention, development, and validation, and then can demonstrate the value of the technology in pre-clinical settings and hopefully via participation in human studies. We describe one-on-one mentorship programs within our individual projects designed to bothfacilitate such training, but also catalyze the collaboratory effort. We also describe three NSBCC short courses, taught at each of the participating institutions, that are designed to teach our researchers key fundamental aspects associated with NSBCC-developed technologies, as well as NSBCC ongoing projects. These courses, designed for non-specialists, are complemented with in depth courses designed for more specialist students that are offered at the participating institutions. We also describe internal educational activities that include student and postdoc participation in our annual retreat, biweekly NSBCC Project meetings, site reviews and national CCNE meetings. Mechanisms to facilitate intra- and inter-CCNE collaborations. The educational programs are overseen by our Internal Review Council and annually reviewed by our External Advisory Board. Outreach programs to the local oncology community are enabled via our IMED Core, and additional outreach programs to underrepresented minority students and industry are described. Finally, we describe our outreach to the global community via public data base sharing, publication, and public communication forums.

Public Health Relevance

NSBCC education &training programs are designed to cultivate a new class of scientists that are capable of translating between technology innovation and clinical application. Our outreach programs tiered to maximize the impact with the local oncology community, and the international community of the commercial, clinical, and scientific world.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
California Institute of Technology
United States
Zip Code
Thai, Minh; Graham, Nicholas A; Braas, Daniel et al. (2014) Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metab 19:694-701
Masui, Kenta; Cavenee, Webster K; Mischel, Paul S (2014) mTORC2 in the center of cancer metabolic reprogramming. Trends Endocrinol Metab 25:364-73
Zhao, Jimmy L; Ma, Chao; O'Connell, Ryan M et al. (2014) Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell 14:445-59
Wong, Deborah J L; Rao, Amol; Avramis, Earl et al. (2014) Exposure to a histone deacetylase inhibitor has detrimental effects on human lymphocyte viability and function. Cancer Immunol Res 2:459-68
Robert, Lidia; Tsoi, Jennifer; Wang, Xiaoyan et al. (2014) CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin Cancer Res 20:2424-32
Nathanson, David A; Gini, Beatrice; Mottahedeh, Jack et al. (2014) Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343:72-6
Chodon, Thinle; Comin-Anduix, BegoƱa; Chmielowski, Bartosz et al. (2014) Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res 20:2457-65
Ribas, Antoni; Tumeh, Paul C (2014) The future of cancer therapy: selecting patients likely to respond to PD1/L1 blockade. Clin Cancer Res 20:4982-4
Gini, Beatrice; Mischel, Paul S (2014) Greater than the sum of its parts: single-nucleus sequencing identifies convergent evolution of independent EGFR mutants in GBM. Cancer Discov 4:876-8
Akhavan, David; Pourzia, Alexandra L; Nourian, Alex A et al. (2013) De-repression of PDGFR* transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov 3:534-47

Showing the most recent 10 out of 22 publications