Human cancers are represented by heterogeneous collections of malignant cells that must be eradicated for treatment to be successful. For many solid organ tumors, cancer stem cells (CSCs) are thought to be responsible for treatment failure and poor clinical outcomes. Accordingly, the detection of CSCs represents a significant priority with regard to prognostication, choice of treatment, and for assessing patient responses to inten/ention. Convenfional tools for the detecfion and isolation of CSCs are near exclusively protein limited. Intracellular mRNA targets have been used extensively for cancer cell sub-population phenotyping;however, detecfion of mRNA targets requires destruction of precious candidate cells for performing RT-PCR and sacrifices throughput. Either for basic science research or clinical use, the capability of simultaneous detecfion of both protein and mRNA markers in live cancer cell populafions, and in real fime, would be significantly enabling. This project aims to bring a new and enabling technology, 'NanoFlares', to bear on the detection and isolation of phenotypically distinct cancer stem cells (CSC). Taking advantage of the unique properties of gold nanoparticles surface functionalized with DNA (DNA Au-NPs), the NanoFlare technology provides the unique capability of phenotyping cell sub-populations simultaneously at the protein and mRNA level. Single-cell analysis is possible using confocal light microscopy while thousands of individual cell measurements can take place in high throughput using flow cytometry (FC) and fiuorescence activated cell sorting (FACS). Focusing initially on breast cancer, project success will have significant impact from the standpoint of basic science discovery in the context of CSCs and, ultimately, for pafients with all forms of localized and disseminated cancer where CSC detection and eradication could have a dramatic impact on patient outcomes.

Public Health Relevance

Appreciafion ofthe cellular heterogeneity that exists within solid organ tumors, including cancer stem cells, is limited by the current technologies available for identifying markers indicative of tumor cell sub-populations. NanoFlare technology interfaces with currently available ones and additionally provides access to intracellular mRNA markers of live cancer cells for the idenfification and isolation of cancer stem cells.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151880-03
Application #
8379769
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
3
Fiscal Year
2012
Total Cost
$1,008,724
Indirect Cost
$851,514
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Lee, Dong-Keun; Kee, Theodore; Liang, Zhangrui et al. (2017) Clinical validation of a nanodiamond-embedded thermoplastic biomaterial. Proc Natl Acad Sci U S A 114:E9445-E9454
Rammohan, Nikhil; Holbrook, Robert J; Rotz, Matthew W et al. (2017) Gd(III)-Gold Nanoconjugates Provide Remarkable Cell Labeling for High Field Magnetic Resonance Imaging. Bioconjug Chem 28:153-160
McMahon, Kaylin M; Scielzo, Cristina; Angeloni, Nicholas L et al. (2017) Synthetic high-density lipoproteins as targeted monotherapy for chronic lymphocytic leukemia. Oncotarget 8:11219-11227
Sita, Timothy L; Kouri, Fotini M; Hurley, Lisa A et al. (2017) Dual bioluminescence and near-infrared fluorescence monitoring to evaluate spherical nucleic acid nanoconjugate activity in vivo. Proc Natl Acad Sci U S A 114:4129-4134
Scott, Alexander W; Garimella, Viswanadham; Calabrese, Colin M et al. (2017) Universal Biotin-PEG-Linked Gold Nanoparticle Probes for the Simultaneous Detection of Nucleic Acids and Proteins. Bioconjug Chem 28:203-211
Chinen, Alyssa B; Guan, Chenxia M; Ko, Caroline H et al. (2017) The Impact of Protein Corona Formation on the Macrophage Cellular Uptake and Biodistribution of Spherical Nucleic Acids. Small 13:
Banga, Resham J; Krovi, Sai Archana; Narayan, Suguna P et al. (2017) Drug-Loaded Polymeric Spherical Nucleic Acids: Enhancing Colloidal Stability and Cellular Uptake of Polymeric Nanoparticles through DNA Surface-Functionalization. Biomacromolecules 18:483-489
Hendricks, Mark P; Sato, Kohei; Palmer, Liam C et al. (2017) Supramolecular Assembly of Peptide Amphiphiles. Acc Chem Res 50:2440-2448
Hung, Andy H; Lilley, Laura M; Hu, Fengqin et al. (2017) Magnetic barcode imaging for contrast agents. Magn Reson Med 77:970-978
Hong, Christine; Song, Dayoung; Lee, Dong-Keun et al. (2017) Reducing posttreatment relapse in cleft lip palatal expansion using an injectable estrogen-nanodiamond hydrogel. Proc Natl Acad Sci U S A 114:E7218-E7225

Showing the most recent 10 out of 216 publications