Drug-resistance is an important factor of failure to cure patients with high-risk neuroblastoma, and little is known of the contribution of the microenvironment to drug resistance in this cancer. In collaboration, the investigators of this project have demonstrated that bone marrow mesenchymal stem cells (BMMSC) and tumor associated monocytes/macrophages (TAM) share a common pathway of interaction with human neuroblastoma cells that leads to drug resistance. Central to this pathway is IL-6 produced by these tumor cellstimulated stromal cells and its downstream target STATS. We hypothesize that such protection allows tumor cells to survive and to undergo additional genetic and epigenetic alterations that render them even more resistant. We also postulate that combining inhibitors of EMDR pathways like IL-6/IL- 6R/STAT3 with chemotherapy or targeted therapy in patients with high-risk neuroblastoma will improve therapeutic response and decrease disease recurrence with multidrug resistant tumor cells.
Aim1 will use co-cultures of drug sensitive neuroblastoma cell lines and BMMSC, pre-osteoblasts, and monocytes/macrophages to determine if they cause resistance to cytotoxic drugs, to identify mechanisms of resistance, and to test the effect of pathway inhibitors in restoring drug sensitivity. Experiments will then be validated with tumor containing bone marrow samples obtained from patients with stage 4 neuroblastoma. Using long term co-cultures of drug sensitive neuroblastoma cell lines in the presence of bone marrow-derived stromal cells we shall test whether EMDR promotes epigenetic changes that will lead to a state of drug resistance that has become independent of the microenvironment.
Aim 2 will evaluate EMDR mechanism in vivo using a transgenic model of MYCN-NA high-risk neuroblastoma (NB-Tag) in which key genes involved in lL-6/IL-6R/STAT3-mediated EMDR will be ablated.
Aim 3 will test the hypothesis that blocking 1L-6/IL- 6R/STATS pathways responsible for EMDR in neuroblastoma enhances the response to chemotherapy. These experiments initially will test lenalidomide, an immune modulator, and tociluzumab, an anti-IL-6R antibody as well a small inhibitors of SI PRI and JAK2. Project 1 will collaborate with Project 2 in testing whether the SDF1a/CXCR4 plays a role in EMDR in neuroblastoma and with Project 3 in determining the contribution of S1P/S1PR1 to IL-6-mediated EMDR and in testing inhibitors of S1PR1 and JAK2 in preclinical models of neuroblastoma. We anticipate that our research will provide a new paradigm for the initial treatment not only of children with high-risk neuroblastoma but also of patients with other cancers.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-3 (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital of Los Angeles
Los Angeles
United States
Zip Code
Borriello, Lucia; Seeger, Robert C; Asgharzadeh, Shahab et al. (2016) More than the genes, the tumor microenvironment in neuroblastoma. Cancer Lett 380:304-14
Yue, Chanyu; Shen, Shudan; Deng, Jiehui et al. (2015) STAT3 in CD8+ T Cells Inhibits Their Tumor Accumulation by Downregulating CXCR3/CXCL10 Axis. Cancer Immunol Res 3:864-70
Bergfeld, Scott A; Blavier, Laurence; DeClerck, Yves A (2014) Bone marrow-derived mesenchymal stromal cells promote survival and drug resistance in tumor cells. Mol Cancer Ther 13:962-75
Borriello, Lucia; DeClerck, Yves A (2014) [Tumor microenvironment and therapeutic resistance process]. Med Sci (Paris) 30:445-51
Priceman, Saul J; Shen, Shudan; Wang, Lin et al. (2014) S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3. Cell Rep 6:992-9
Yang, Chunmei; Lee, Heehyoung; Jove, Veronica et al. (2013) Prognostic significance of B-cells and pSTAT3 in patients with ovarian cancer. PLoS One 8:e54029
Ara, Tasnim; Nakata, Rie; Sheard, Michael A et al. (2013) Critical role of STAT3 in IL-6-mediated drug resistance in human neuroblastoma. Cancer Res 73:3852-64
Yang, Chunmei; Lee, Heehyoung; Pal, Sumanta et al. (2013) B cells promote tumor progression via STAT3 regulated-angiogenesis. PLoS One 8:e64159
Xin, Hong; Lu, Rongze; Lee, Heehyoung et al. (2013) G-protein-coupled receptor agonist BV8/prokineticin-2 and STAT3 protein form a feed-forward loop in both normal and malignant myeloid cells. J Biol Chem 288:13842-9
Fang, Hua; Declerck, Yves A (2013) Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 73:4965-77