Majority of cancer patients will die of metastases originating from disseminated tumor cells (DTCs), years or even decades after treatment. This suggests that DTCs survive in a dormant, nonproliferative state. However, because the biology of DTCs is poorly understood it is critical to ask basic mechanistic questions to further develop translational approaches. Our goal is to identify these mechanisms by combining powerful In vivo models and novel imaging and nano-device technologies available through this collaboration. This consortium provides unprecedented synergy to study dormancy and address three emphasis areas of this RFA: 1) tumor dormancy, activation of dormant cells and the tumor microenvironment (SAI), and dormancy in response to cancer treatment (SA2); 2) imaging the tumor microenvironment during tumor metastasis, and dormancy (SAI), as well as in response to therapies (SA2) and 3) characterization and functional relevance of the tumor microenvironment extracellular matrix (ECM) and how tumor cells stroma interactions (i.e. niches) establish metastatic cell fate (SA2). We hypothesize that at least two scenarios influence DTC dormancy. Scenario 1: DTCs from invasive cancers activate stress signals in response to a growth-restrictive target organ microenvironment inducing dormancy. Scenario 2: therapy and/or microenvironmental stress conditions (e.g. hypoxia) acfing on primary tumor cells carrying a

Public Health Relevance

We will use novel imaging and nano-device technologies to tag, track and isolate disseminating tumor cells departing from primary tumors and proliferating or entering dormancy in target organs. We will discover their metabolic, genomic and transcription profiles to identity a cancer dormancy gene signature relevant to patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA163131-02
Application #
8555313
Study Section
Special Emphasis Panel (ZCA1-SRLB-3 (O1))
Project Start
2011-09-19
Project End
2016-07-30
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
2
Fiscal Year
2012
Total Cost
$237,439
Indirect Cost
$39,627
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Williams, James K; Entenberg, David; Wang, Yarong et al. (2016) Validation of a device for the active manipulation of the tumor microenvironment during intravital imaging. Intravital 5:
Hosseini, Hedayatollah; Obradović, Milan M S; Hoffmann, Martin et al. (2016) Early dissemination seeds metastasis in breast cancer. Nature :
Alsadeq, A; Strube, S; Krause, S et al. (2015) Effects of p38α/β inhibition on acute lymphoblastic leukemia proliferation and survival in vivo. Leukemia 29:2307-16
Curran, Colleen S; Carrillo, Esteban R; Ponik, Suzanne M et al. (2015) Collagen density regulates xenobiotic and hypoxic response of mammary epithelial cells. Environ Toxicol Pharmacol 39:114-24
Sosa, Maria Soledad; Parikh, Falguni; Maia, Alexandre Gaspar et al. (2015) NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat Commun 6:6170
Hasegawa, Daisuke; Calvo, Veronica; Avivar-Valderas, Alvaro et al. (2015) Epithelial Xbp1 is required for cellular proliferation and differentiation during mammary gland development. Mol Cell Biol 35:1543-56
Sosa, María Soledad; Bragado, Paloma; Aguirre-Ghiso, Julio A (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14:611-22
Chéry, Lisly; Lam, Hung-Ming; Coleman, Ilsa et al. (2014) Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 5:9939-51
Roh-Johnson, M; Bravo-Cordero, J J; Patsialou, A et al. (2014) Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 33:4203-12
Avivar-Valderas, A; Wen, H C; Aguirre-Ghiso, J A (2014) Stress signaling and the shaping of the mammary tissue in development and cancer. Oncogene 33:5483-90

Showing the most recent 10 out of 34 publications