The Data Organization Core (DOC) of the Mount Sinai's KMC-IDG will collect, process, and maintain attributes about the druggable targets for all proposed families: protein kinases, G-protein coupled receptors, nuclear receptors and ion channels. The emphasis will be to focus on those genes/proteins that are understudied and collect unbiased genome-wide profiling datasets. In addition, the DOC will collect, process and maintain data tables and attributes for all other genes/proteins, drugs/small-molecules and other perturbagens, pheontypes/diseases/side-effects, and clinical as well as genomics datasets from cohorts of patients. This will enable us to identify links between and across genes/proteins networks, drugs/small-molecules and other perturbagens networks, pheontypes/diseases/side-effects networks, and clusters of individual patients with similar profiles. For this, the Core will develop and apply clustering and classification algorithms as well as workflows to make predictions about the potential applicability of targeting the understudied proteins for various translational applications in personalized medicine.

Public Health Relevance

The large amount of data that is accumulating from genome-wide emerging biotechnologies is illuminating new biology about many genes that until recently not much data was available. This new knowledge, integrated with existing databases, can be used to prioritize potential genes/proteins as novel drug targets.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BST-M (50))
Program Officer
Zenklusen, Jean C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Icahn School of Medicine at Mount Sinai
New York
United States
Zip Code
Gundersen, Gregory W; Jagodnik, Kathleen M; Woodland, Holly et al. (2016) GEN3VA: aggregation and analysis of gene expression signatures from related studies. BMC Bioinformatics 17:461
Khan, Jalal A; Mendelson, Avital; Kunisaki, Yuya et al. (2016) Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351:176-80
Cohain, Ariella; Divaraniya, Aparna A; Zhu, Kuixi et al. (2016) EXPLORING THE REPRODUCIBILITY OF PROBABILISTIC CAUSAL MOLECULAR NETWORK MODELS. Pac Symp Biocomput 22:120-131
Wang, Zichen; Clark, Neil R; Ma'ayan, Avi (2016) Drug-induced adverse events prediction with the LINCS L1000 data. Bioinformatics 32:2338-45
Wang, Zichen; Monteiro, Caroline D; Jagodnik, Kathleen M et al. (2016) Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nat Commun 7:12846
Ruderfer, Douglas M; Charney, Alexander W; Readhead, Ben et al. (2016) Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach. Lancet Psychiatry 3:350-7
Readhead, B; Haure-Mirande, J-V; Zhang, B et al. (2016) Molecular systems evaluation of oligomerogenic APP(E693Q) and fibrillogenic APP(KM670/671NL)/PSEN1(Δexon9) mouse models identifies shared features with human Alzheimer's brain molecular pathology. Mol Psychiatry 21:1099-111
Hodos, Rachel A; Kidd, Brian A; Shameer, Khader et al. (2016) In silico methods for drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med 8:186-210
Mallipattu, Sandeep K; Guo, Yiqing; Revelo, Monica P et al. (2016) Krüppel-Like Factor 15 Mediates Glucocorticoid-Induced Restoration of Podocyte Differentiation Markers. J Am Soc Nephrol :
Wang, Zichen; Ma'ayan, Avi (2016) An open RNA-Seq data analysis pipeline tutorial with an example of reprocessing data from a recent Zika virus study. F1000Res 5:1574

Showing the most recent 10 out of 40 publications