Prior MIDAS initiatives have developed agent-based models of infectious disease that contain sufficient biologic, behavioral and geographically detailed data to assess the impact of mitigation strategies on epidemic outcomes. Local, state and national policy makers have used tools based on these models to evaluate mitigation strategies in epidemic influenza and other infectious diseases. However, these tools have not yet provided policy makers with fully integrated evaluations across all dimensions of interest, nor have they provided comprehensive measures of the confidence surrounding model results. When making decisions regarding potential or real infectious disease threats, policy makers must balance a wide array of agendas and priorities which extend beyond the epidemic outcomes of number of cases and the subsequent mortality and morbidity of the disease. Through multiple interactions with policy makers, we characterized and aggregated these into three measurable dimensions represented in the """"""""LEO"""""""" acronym: Legal and policy specifications. Economic resources and assets, and Operational performance. Although we have conducted investigations that used components of this framework to evaluate different strategies, these evaluations were conducted outside of the simulation model of disease. Therefore, there are two overarching goals of the Policy Methods project in this application: 1) provide integrated model-based mechanisms to evaluate the implementation of disease mitigation strategies, including the laws and policies that support them, the economic costs and savings they produce, and the operational capabilities they require;and 2) provide estimates of the variability of model results and the value of reducing model uncertainty to increase surety that appropriate mitigation decisions are made. This work will develop, in collaboration with the external policy makers involved in the Policy Studies component of this application, the methods and tools to inform infectious disease decision making across a broad array of clinical, economic, legal and social concerns.

Public Health Relevance

Successful completion of this work will provide a platform that allows policy makers to evaluate potential mitigation strategies across a much wider range of policy-relevant outcomes, including geographically specific detail regarding the impact of mitigation strategies on epidemic outcomes, economic consequences, and the legal and operational ability of health care and public health organizations to respond to threats.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-BBCB-5 (MI))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Lessler, Justin; Cummings, Derek A T (2016) Mechanistic Models of Infectious Disease and Their Impact on Public Health. Am J Epidemiol 183:415-22
Salje, Henrik; Cauchemez, Simon; Alera, Maria Theresa et al. (2016) Reconstruction of 60 Years of Chikungunya Epidemiology in the Philippines Demonstrates Episodic and Focal Transmission. J Infect Dis 213:604-10
Clapham, Hannah E; Rodriguez-Barraquer, Isabel; Azman, Andrew S et al. (2016) Dengue Virus (DENV) Neutralizing Antibody Kinetics in Children After Symptomatic Primary and Postprimary DENV Infection. J Infect Dis 213:1428-35
Chadsuthi, Sudarat; Iamsirithaworn, Sopon; Triampo, Wannapong et al. (2016) The impact of rainfall and temperature on the spatial progression of cases during the chikungunya re-emergence in Thailand in 2008-2009. Trans R Soc Trop Med Hyg 110:125-33
Guclu, Hasan; Read, Jonathan; Vukotich Jr, Charles J et al. (2016) Social Contact Networks and Mixing among Students in K-12 Schools in Pittsburgh, PA. PLoS One 11:e0151139
Grantz, Kyra H; Rane, Madhura S; Salje, Henrik et al. (2016) Disparities in influenza mortality and transmission related to sociodemographic factors within Chicago in the pandemic of 1918. Proc Natl Acad Sci U S A 113:13839-13844
Poon, Leo L M; Song, Timothy; Rosenfeld, Roni et al. (2016) Quantifying influenza virus diversity and transmission in humans. Nat Genet 48:195-200
Dalziel, Benjamin D; Bjørnstad, Ottar N; van Panhuis, Willem G et al. (2016) Persistent Chaos of Measles Epidemics in the Prevaccination United States Caused by a Small Change in Seasonal Transmission Patterns. PLoS Comput Biol 12:e1004655
Nisalak, Ananda; Clapham, Hannah E; Kalayanarooj, Siripen et al. (2016) Forty Years of Dengue Surveillance at a Tertiary Pediatric Hospital in Bangkok, Thailand, 1973-2012. Am J Trop Med Hyg 94:1342-7
Lessler, Justin; Salje, Henrik; Van Kerkhove, Maria D et al. (2016) Estimating the Severity and Subclinical Burden of Middle East Respiratory Syndrome Coronavirus Infection in the Kingdom of Saudi Arabia. Am J Epidemiol 183:657-63

Showing the most recent 10 out of 199 publications