While the infrastructure and organization of the EFI are inspired by the PSI, there are significant differences in their objectives, which offer unique opportunities for the EFI. Historically, the primary focus of the PSI has been on increasing the structural coverage of fold and sequence space, and the structure of any member of a particular sequence family is a suitable representative of the entire family. Consequently, all PSI targets are subjected to extensive triage, and only those sequences exhibiting highly favorable characteristics at each step of the pipeline are taken fonward for structure determination. This approach maximizes fold/sequence coverage regardless of functional importance. In contrast, the EFI is explicitly concerned with the discovery of function and thus will frequently necessitate the study of recalcitrant sequences requiring efforts that exceed those commonly expended on any individual PSI target. Accordingly, the PC and SC are positioned to implement considerable primary and secondary rescue strategies in protein purification, crystallization, data collection and structure determination in order to successfully prosecute those targets that are most informative in terms of function, mechanism and evolution. In particular, as needed and detailed below, the expert technical staff of the SC is prepared to provide extensive and expanded efforts in crystallization, data collection and structure determination. Furthermore, beyond these traditional aspects of the structure discovery pipeline, the SC will devote considerable resources to ligand identification efforts in order to 1) obtain direct functional insights, 2) aid in crystallization, and 3) maximize the utility of structures for computational ligand discovery.

National Institute of Health (NIH)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois Urbana-Champaign
United States
Zip Code
Mashiyama, Susan T; Malabanan, M Merced; Akiva, Eyal et al. (2014) Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere. PLoS Biol 12:e1001843
Akiva, Eyal; Brown, Shoshana; Almonacid, Daniel E et al. (2014) The Structure-Function Linkage Database. Nucleic Acids Res 42:D521-30
Zheng, Heping; Hou, Jing; Zimmerman, Matthew D et al. (2014) The future of crystallography in drug discovery. Expert Opin Drug Discov 9:125-37
Wichelecki, Daniel J; Graff, Dylan C; Al-Obaidi, Nawar et al. (2014) Identification of the in vivo function of the high-efficiency D-mannonate dehydratase in Caulobacter crescentus NA1000 from the enolase superfamily. Biochemistry 53:4087-9
Dong, Guang Qiang; Calhoun, Sara; Fan, Hao et al. (2014) Prediction of substrates for glutathione transferases by covalent docking. J Chem Inf Model 54:1687-99
Wichelecki, Daniel J; Vendiola, Jean Alyxa Ferolin; Jones, Amy M et al. (2014) Investigating the physiological roles of low-efficiency D-mannonate and D-gluconate dehydratases in the enolase superfamily: pathways for the catabolism of L-gulonate and L-idonate. Biochemistry 53:5692-9
Bouvier, Jason T; Groninger-Poe, Fiona P; Vetting, Matthew et al. (2014) Galactaro ?-lactone isomerase: lactone isomerization by a member of the amidohydrolase superfamily. Biochemistry 53:614-6
Wichelecki, Daniel J; Froese, D Sean; Kopec, Jolanta et al. (2014) Enzymatic and structural characterization of rTS? provides insights into the function of rTS?. Biochemistry 53:2732-8
Pandya, Chetanya; Dunaway-Mariano, Debra; Xia, Yu et al. (2014) Structure-guided approach for detecting large domain inserts in protein sequences as illustrated using the haloacid dehalogenase superfamily. Proteins 82:1896-906
Kumar, Ritesh; Zhao, Suwen; Vetting, Matthew W et al. (2014) Prediction and biochemical demonstration of a catabolic pathway for the osmoprotectant proline betaine. MBio 5:e00933-13

Showing the most recent 10 out of 49 publications