The GST superfamily is a large group of proteins, the members of which are composed of two domains, an N-terminal thioredoxin-like domain (orange) that binds GSH, and a C-terminal all a-helical domain (blue), as illustrated by the structure of the GST protein from ?. coli in the figure to the right [1, 2). These proteins are found in most aerobic organisms. The GSTs were discovered in mammals over forty-five years ago [3]. For the first thirty years, their role in biology was thought to lie exclusively in the detoxification of endogenous and xenobiotic compounds by catalyzing the addition of GSH to electrophilic functional groups, as illustrated in Eq. 1. These reactions include electrophiles such as epoxides, enones and alkyl and aryl halides The catalytic diversity of GSTs also includes isomerization reactions, hydrolysis, and redox reactions with organic hydroperoxides, disulfides and, perhaps, selenides and selenates. The functional diversity of these proteins exceeds their catalytic promiscuity. In bacteria and eukaryotes, the proteins are involved in detoxication reactions, catabollsm, the regulation of transcription and translation, the conductance of ions across membranes, and (we are almost sure) thiol homeostasis and protein folding. Nine of the approximately 4,400 proteins encoded by the ?. coli genome encode GST homologs [2, 4). The consensus residues for the GST homologs found in E. coli are shown in space-filling representation in the structure above to highlight the fact that the highly conserved residues in GST family members are principally involved in the structural stability of the fold rather than the function of the protein. The principal role of the thioredoxin-like domain is to bind GSH or related ligands while the a-helical domain tends to specify more subtle aspects ofthe protein function. The proteins are typically dimers.

National Institute of Health (NIH)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois Urbana-Champaign
United States
Zip Code
Mashiyama, Susan T; Malabanan, M Merced; Akiva, Eyal et al. (2014) Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere. PLoS Biol 12:e1001843
Akiva, Eyal; Brown, Shoshana; Almonacid, Daniel E et al. (2014) The Structure-Function Linkage Database. Nucleic Acids Res 42:D521-30
Zheng, Heping; Hou, Jing; Zimmerman, Matthew D et al. (2014) The future of crystallography in drug discovery. Expert Opin Drug Discov 9:125-37
Wichelecki, Daniel J; Graff, Dylan C; Al-Obaidi, Nawar et al. (2014) Identification of the in vivo function of the high-efficiency D-mannonate dehydratase in Caulobacter crescentus NA1000 from the enolase superfamily. Biochemistry 53:4087-9
Dong, Guang Qiang; Calhoun, Sara; Fan, Hao et al. (2014) Prediction of substrates for glutathione transferases by covalent docking. J Chem Inf Model 54:1687-99
Wichelecki, Daniel J; Vendiola, Jean Alyxa Ferolin; Jones, Amy M et al. (2014) Investigating the physiological roles of low-efficiency D-mannonate and D-gluconate dehydratases in the enolase superfamily: pathways for the catabolism of L-gulonate and L-idonate. Biochemistry 53:5692-9
Bouvier, Jason T; Groninger-Poe, Fiona P; Vetting, Matthew et al. (2014) Galactaro ?-lactone isomerase: lactone isomerization by a member of the amidohydrolase superfamily. Biochemistry 53:614-6
Wichelecki, Daniel J; Froese, D Sean; Kopec, Jolanta et al. (2014) Enzymatic and structural characterization of rTS? provides insights into the function of rTS?. Biochemistry 53:2732-8
Pandya, Chetanya; Dunaway-Mariano, Debra; Xia, Yu et al. (2014) Structure-guided approach for detecting large domain inserts in protein sequences as illustrated using the haloacid dehalogenase superfamily. Proteins 82:1896-906
Kumar, Ritesh; Zhao, Suwen; Vetting, Matthew W et al. (2014) Prediction and biochemical demonstration of a catabolic pathway for the osmoprotectant proline betaine. MBio 5:e00933-13

Showing the most recent 10 out of 49 publications