The Joint Center for Structural Genomics (JCSG) aims to participate in the NIGMS PSI:Biology program as a Center for High-Throughput Structure Determination. The JCSG high-throughput (HT) platform assembled over the past ten years will efficiently deliver large numbers of protein structures to the community by both x-ray crystallography and NMR on a wide range of targets from bacteria to human, including challenging targets such as eukaryotic proteins, protein-protein and other macromolecular complexes. Throughout PSI:Biology, the JCSG will adapt and tailor its operations to achieve the programmatic goals as they grow and evolve. The JCSG will continue to develop new technologies and methodologies, both experimental and computational, to address the spectrum of targets that will be presented, while keeping cost per structure to a minimum and quality to the highest standard. Integration within the PSI Network will be a high priority to embrace interactions with the Biology Partnership centers, future PARS, and the community, as well as support for all PSI Network activities, including the PSI-SGKB and PSI-MR. The JCSG will capitalize on its extensive experience to develop the best strategies to enhance chances of success and eliminate those that lead to failure. Contribution to the original PSI mission of extending structural coverage of the expanding protein universe will be advanced through judicious choice of targets, as will development of tools and collaborations that facilitate dissection of entire networks, pathways and molecular machineries for single organisms or cells from a structural perspective. The biomedical theme project will focus on the human microbiome. Interactions of commensal bacteria with the human body are profound and have a significant impact on maintenance of general human health, but are also associated with obesity, inflammatory diseases, diabetes and certain cancers to name but a few. The JCSG will leverage its HT platform to promote the biological and biomedical impact of all of its structures through extensive biophysical, functional and bioinformatics analyses in collaboration with the other PSI:Biology participants. Thus, the overall goal is to provide a robust, flexible HT structure determination platform that will meet the challenges and embrace the new opportunities that arise from the projects emanating from the PSI:Biology Partnerships and other PSI-supported projects. Furthermore, we will strive along with the PSI Network to promote widespread use of the PSI resources, materials, methodologies, data and models to the general scientific community.

Public Health Relevance

Many of the targets have direct relevance to human disease. Commensal bacteria in the human gut provide tremendous metabolic benefits, but perturbation of the symbiotic balance is linked to obesity, cancer, and inflammatory and other diseases. Structural and biological studies of proteins from the human microbiome (gut and other) and other biomedically important PSI:Biology targets will provide invaluable insights into their function and enhance discovery of new therapeutics and treatments for disease.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Edmonds, Charles G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Mohanty, Biswaranjan; Geralt, Michael; Wüthrich, Kurt et al. (2016) NMR reveals structural rearrangements associated to substrate insertion in nucleotide-adding enzymes. Protein Sci 25:917-25
Grabowski, Marek; Langner, Karol M; Cymborowski, Marcin et al. (2016) A public database of macromolecular diffraction experiments. Acta Crystallogr D Struct Biol 72:1181-1193
Rowe, Timothy B; Luo, Zhe-Xi; Ketcham, Richard A et al. (2016) X-ray computed tomography datasets for forensic analysis of vertebrate fossils. Sci Data 3:160040
Xu, Qingping; Shoji, Mikio; Shibata, Satoshi et al. (2016) A Distinct Type of Pilus from the Human Microbiome. Cell 165:690-703
Kong, Leopold; Ju, Bin; Chen, Yajing et al. (2016) Key gp120 Glycans Pose Roadblocks to the Rapid Development of VRC01-Class Antibodies in an HIV-1-Infected Chinese Donor. Immunity 44:939-50
He, Linling; de Val, Natalia; Morris, Charles D et al. (2016) Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles. Nat Commun 7:12041
Martin, Bryan T; Serrano, Pedro; Geralt, Michael et al. (2016) Nuclear Magnetic Resonance Structure of a Novel Globular Domain in RBM10 Containing OCRE, the Octamer Repeat Sequence Motif. Structure 24:158-64
Serrano, Pedro; Dutta, Samit K; Proudfoot, Andrew et al. (2016) NMR in structural genomics to increase structural coverage of the protein universe. FEBS J :
Beuck, Christine; Williamson, James R; Wüthrich, Kurt et al. (2016) The acidic domain is a unique structural feature of the splicing factor SYNCRIP. Protein Sci 25:1545-50
Bhowmik, Shiva; Chiu, Hsien-Po; Jones, David H et al. (2016) Structure and functional characterization of a bile acid 7α dehydratase BaiE in secondary bile acid synthesis. Proteins 84:316-31

Showing the most recent 10 out of 122 publications