The objective is to be able to produce NMR "structurable" samples for the NESG while at the same time developing methods for the efficient production of eukaryotic proteins and domains for NMR. The targets that we are going to pursue are subsets of NESG's main target group. Cancer-related targets and those involved in human ubiquitylation pathways will be the main focus, along with community- and PSI-Biology Center-nominated targets. We will use bioinformatics and multiple domain boundaries as our first approach to identify which protein constructs will be most amenable to NMR analysis. Experimental domain mapping via limited proteolysis followed by mass spectrometry will be used as a second approach. The constructs will be cloned into one of two pET vectors using standard PCR techniques and Ligation independent cloning (LIC), in a 96-well format. All the proteins will be expressed in E.coli grown in 15N-labelled minimal media and purified using batch Ni-affinity purification methods. All targets that are deemed amenable to structure determination by NMR will be labeled with 13C and 15N and more extensively purified and assessed for stability. For the more difficult eukaryotic targets, new methods will be developed to improve the efficiency with which we can purify soluble, stable domains. A large proportion of our efforts will devoted to implementing the bacullovirus expression system in a high throughput manner for selected human targets. Any proteins resulting from this endeavor will be sent to other NESG laboratories for crystallization trials.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-CBB-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rutgers University
New Brunswick
United States
Zip Code
Pulavarti, Surya V S R K; Eletsky, Alexander; Huang, Yuanpeng J et al. (2015) Polypeptide backbone, C(?) and methyl group resonance assignments of the 24 kDa plectin repeat domain 6 from human protein plectin. Biomol NMR Assign 9:135-8
Prestegard, James H; Agard, David A; Moremen, Kelley W et al. (2014) Sparse labeling of proteins: structural characterization from long range constraints. J Magn Reson 241:32-40
Helander, Sara; Montecchio, Meri; Lemak, Alexander et al. (2014) Basic Tilted Helix Bundle - a new protein fold in human FKBP25/FKBP3 and HectD1. Biochem Biophys Res Commun 447:26-31
Yee, Adelinda A; Semesi, Anthony; Garcia, Maite et al. (2014) Screening proteins for NMR suitability. Methods Mol Biol 1140:169-78
Boël, Grégory; Smith, Paul C; Ning, Wei et al. (2014) The ABC-F protein EttA gates ribosome entry into the translation elongation cycle. Nat Struct Mol Biol 21:143-51
Aiyer, Sriram; Swapna, G V T; Malani, Nirav et al. (2014) Altering murine leukemia virus integration through disruption of the integrase and BET protein family interaction. Nucleic Acids Res 42:5917-28
Xu, Xianzhong; Pulavarti, Surya V S R K; Eletsky, Alexander et al. (2014) Solution NMR structures of homeodomains from human proteins ALX4, ZHX1, and CASP8AP2 contribute to the structural coverage of the Human Cancer Protein Interaction Network. J Struct Funct Genomics 15:201-7
Eletsky, Alexander; Michalska, Karolina; Houliston, Scott et al. (2014) Structural and functional characterization of DUF1471 domains of Salmonella proteins SrfN, YdgH/SssB, and YahO. PLoS One 9:e101787
Huang, Yuanpeng Janet; Acton, Thomas B; Montelione, Gaetano T (2014) DisMeta: a meta server for construct design and optimization. Methods Mol Biol 1091:3-16
Stark, Jaime L; Mehla, Kamiya; Chaika, Nina et al. (2014) Structure and function of human DnaJ homologue subfamily a member 1 (DNAJA1) and its relationship to pancreatic cancer. Biochemistry 53:1360-72

Showing the most recent 10 out of 81 publications