We have demonstrated that a productive GPCR structure pipeline has been established at TSRI and is capable of generating breakthrough results. Based on prior experience, we now need to optimize the feedback loops that exist within the processes, this will result in an increase in efficiency and reduction in the cost of future GPCR structures. Determination of each new GPCR structure remains a costly multistage process with many challenges and requires thorough optimization. Moreover, the impact of structural genomics on understanding GPCR biological function and selectivity hinges on our ability to effectively leverage each high resolution structure solved. This project will be focused on development and application of advanced computational tools to address these needs and improve throughput, success rate, cost-efficiency and overall impact of the structure determination program. Structure-based computer-aided tools for rational protein engineering will be employed to design conformationally stable GPCRs and GPCR-ligand complexes for crystallization. Based on comprehensive bioinformatics platform and learning from accumulated data for the GPCR family, mathematical models will be implemented to streamline selection of experimental conditions for protein expression, purification and crystallization stages. Finally, advanced homology-based 3D conformational modeling and molecular docking will be applied to maximize the impact of each solved GPCR target on understanding of molecular interactions, conformational plasticity and functional selectivity of all GPCRs within the target subfamily, and a complete data package will be distributed to the scientific community.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54GM094618-05
Application #
8716776
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Eddy, Matthew T; Didenko, Tatiana; Stevens, Raymond C et al. (2016) β2-Adrenergic Receptor Conformational Response to Fusion Protein in the Third Intracellular Loop. Structure 24:2190-2197
Rowe, Timothy B; Luo, Zhe-Xi; Ketcham, Richard A et al. (2016) X-ray computed tomography datasets for forensic analysis of vertebrate fossils. Sci Data 3:160040
Ngo, Tony; Kufareva, Irina; Coleman, James L J et al. (2016) Identifying ligands at orphan GPCRs: current status using structure-based approaches. Br J Pharmacol :
Kufareva, Irina; Gustavsson, Martin; Holden, Lauren G et al. (2016) Disulfide Trapping for Modeling and Structure Determination of Receptor: Chemokine Complexes. Methods Enzymol 570:389-420
Yang, Dehua; de Graaf, Chris; Yang, Linlin et al. (2016) Structural Determinants of Binding the Seven-transmembrane Domain of the Glucagon-like Peptide-1 Receptor (GLP-1R). J Biol Chem 291:12991-3004
Zheng, Yi; Qin, Ling; Zacarías, Natalia V Ortiz et al. (2016) Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540:458-461
Zhu, Lan; Weierstall, Uwe; Cherezov, Vadim et al. (2016) Serial Femtosecond Crystallography of Membrane Proteins. Adv Exp Med Biol 922:151-60
White, Thomas A; Barty, Anton; Liu, Wei et al. (2016) Serial femtosecond crystallography datasets from G protein-coupled receptors. Sci Data 3:160057
Batyuk, Alexander; Galli, Lorenzo; Ishchenko, Andrii et al. (2016) Native phasing of x-ray free-electron laser data for a G protein-coupled receptor. Sci Adv 2:e1600292
Leach, Katie; Gregory, Karen J; Kufareva, Irina et al. (2016) Towards a structural understanding of allosteric drugs at the human calcium-sensing receptor. Cell Res 26:574-92

Showing the most recent 10 out of 109 publications