This is a proposal for a multi-institutional MIDAS Center of Excellence called the Center for Statistics and Quantitative Infectious Diseases (CSQUID). The mission the Center is to provide national and international leadership. The lead institution is the Fred Hutchinson Cancer Research Center (FHCRC). Other participating institutions are the University of Florida, Northeastern University, University of Michigan, Emory University, University of Washington (UW), University of Georgia, and Duke University. The proposal includes four synergistic research projects (RP) that will develop cutting-edge methodologies applied to solving epidemiologic, immunologic and evolutionary problems important for public health policy in influenza, dengue, polio, TB, and other infectious agents: RP1: Modeling, Spatial, Statistics (Lead: I. Longini, U. Florida);RP2: Dynamic Inference (Lead: P. Rohani, U Michigan);RP 3: Understanding transmission with integrated genetic and epidemiologic inference (Co-Leads: E. Kenah, U Florida and T. Bedford, FHCRC);RP 4: Dynamics and Evolution of Influenza Strain Variation (Lead: R. Antia, Emory U). The Software Development and Core Facilities (Lead: A. Vespignani, Northeastern U) will provide leadership in software development, access, and communication. The Policy Studies (Lead: J. Koopman, U Michigan) will provide leadership in communication of our research results to policy makers, as well as conducting novel research into policy making. The Training, Outreach, and Diversity Plans include ongoing training of 9 postdoctoral fellows and 5.25 predoctoral research assistants each year, support for participants in the Summer Institute for Statistics and Modeling in Infectious Diseases (UW) and ongoing Research Experience for Undergraduates programs at two institutions, among others. All participating institutions and the Center are committed to increasing diversity at all levels. Center-wide activities include Career Development Awards for junior faculty, annual workshops and symposia, outside speakers, and participation in the MIDAS Network meetings. Scientific leadership will be provided by the Center Director, a Leadership Committee, an external Scientific Advisory Board as well as the MIDAS Steering Committee.

Public Health Relevance

This multi-institutional MIDAS Center of Excellence provides a multi-disciplinary approach to computational, statistical, and mathematical modeling of important infectious diseases. The research is motivated by multiscale problems such as immunologic, epidemiologic, and environmental drivers of the spread of infectious diseases with the goal of understanding and communicating the implications for public health policy.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-BBCB-5 (MI))
Program Officer
Sheeley, Douglas
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fred Hutchinson Cancer Research Center
United States
Zip Code
Feldstein, Leora R; Matrajt, Laura; Elizabeth Halloran, M et al. (2016) Extrapolating theoretical efficacy of inactivated influenza A/H5N1 virus vaccine from human immunogenicity studies. Vaccine 34:3796-802
Bento, Ana I; Rohani, Pejman (2016) Forecasting Epidemiological Consequences of Maternal Immunization. Clin Infect Dis 63:S205-S212
Xue, Katherine S; Hooper, Kathryn A; Ollodart, Anja R et al. (2016) Cooperation between distinct viral variants promotes growth of H3N2 influenza in cell culture. Elife 5:e13974
Koepke, Amanda A; Longini Jr, Ira M; Halloran, M Elizabeth et al. (2016) PREDICTIVE MODELING OF CHOLERA OUTBREAKS IN BANGLADESH. Ann Appl Stat 10:575-595
Ngwa, Moise C; Liang, Song; Kracalik, Ian T et al. (2016) Cholera in Cameroon, 2000-2012: Spatial and Temporal Analysis at the Operational (Health District) and Sub Climate Levels. PLoS Negl Trop Dis 10:e0005105
Chao, Dennis L; Dimitrov, Dobromir T (2016) Seasonality and the effectiveness of mass vaccination. Math Biosci Eng 13:249-59
Neher, Richard A; Bedford, Trevor; Daniels, Rodney S et al. (2016) Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses. Proc Natl Acad Sci U S A 113:E1701-9
Chen, Wan-Jun; Lai, Sheng-Jie; Yang, Yang et al. (2016) Mapping the Distribution of Anthrax in Mainland China, 2005-2013. PLoS Negl Trop Dis 10:e0004637
Fang, Li-Qun; Yang, Yang; Jiang, Jia-Fu et al. (2016) Transmission dynamics of Ebola virus disease and intervention effectiveness in Sierra Leone. Proc Natl Acad Sci U S A 113:4488-93
Magpantay, F M G; Domenech DE Cellès, M; Rohani, P et al. (2016) Pertussis immunity and epidemiology: mode and duration of vaccine-induced immunity. Parasitology 143:835-49

Showing the most recent 10 out of 63 publications