Autism spectrum disorder (ASD) is characterized by social impairments, including impaired social cognition, social percepfion, and social attention. Recently, there has been increased interest in examining the impact of motivational systems on social functioning in ASD. The frarinework of the so-called """"""""social motivation hypothesis"""""""" of ASD is that functional disruption in brain circuits that support social motivational may constitute a primary deficit in ASD that may have downstream effects on the development of social cognition. The mesolimbic dopamine system arising in the ventral tegmental area (VTA) and projecfing to the nucleus accumbens (NAc) is an essential substrate for the expression of many forms of motivated behaviors. Human neuroimaging studies have demonstrated reduced mesolimbic activation in ASD to social rewards, suggesting that reduced function of the mesolimbic dopaminergic system may underlie decreased sociial motivation in ASD. Whereas social deficits in ASD may be related to pathological mesolimbic dopamine system activity, it is unknown if precise neural circuit manipulations that can directly control dopamine output in the NAc to promote pro-social behaviors in animal models of ASD. In addition, the neuropeptide oxytocin (OT) is a promising therapeufic to promote social engagement in ASD and is known to regulate VTA activity in response to social rewards specifically. However the functional neural circuitry by which OT neurons regulate VTA dopaminergic activity has not been identified. These are critical gaps in our understanding of the neural cii-cuitry that controls motivated social engagement. We propose a translational project integrating optogenetic circuit manipulafions in a mouse model of ASD with a clinical functional neuroimaging evaluation of the effects of OT on reward circuits in individuals with ASD.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HD079124-02
Application #
8740538
Study Section
Special Emphasis Panel (ZHD1-DSR-H)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
2
Fiscal Year
2014
Total Cost
$146,325
Indirect Cost
$50,058
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Shnitko, Tatiana A; Mace, Kyla D; Sullivan, Kaitlin M et al. (2017) Use of fast-scan cyclic voltammetry to assess phasic dopamine release in rat models of early postpartum maternal behavior and neglect. Behav Pharmacol 28:648-660
Noel, Jean; Prieto, Juan C; Styner, Martin (2017) FADTTSter: Accelerating Hypothesis Testing With Functional Analysis of Diffusion Tensor Tract Statistics. Proc SPIE Int Soc Opt Eng 10137:
Hare, Stephanie M; Ford, Judith M; Ahmadi, Aral et al. (2017) Modality-Dependent Impact of Hallucinations on Low-Frequency Fluctuations in Schizophrenia. Schizophr Bull 43:389-396
Young, Jeffrey T; Shi, Yundi; Niethammer, Marc et al. (2017) The UNC-Wisconsin Rhesus Macaque Neurodevelopment Database: A Structural MRI and DTI Database of Early Postnatal Development. Front Neurosci 11:29
Decot, Heather K; Namboodiri, Vijay M K; Gao, Wei et al. (2017) Coordination of Brain-Wide Activity Dynamics by Dopaminergic Neurons. Neuropsychopharmacology 42:615-627
Swanson, Meghan R; Wolff, Jason J; Elison, Jed T et al. (2017) Splenium development and early spoken language in human infants. Dev Sci 20:
Hirsch, Matthew L; Conatser, Laura M; Smith, Sara M et al. (2017) AAV vector-meditated expression of HLA-G reduces injury-induced corneal vascularization, immune cell infiltration, and fibrosis. Sci Rep 7:17840
Wolff, Jason J; Swanson, Meghan R; Elison, Jed T et al. (2017) Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism. Mol Autism 8:8
Hazlett, Heather Cody; Gu, Hongbin; Munsell, Brent C et al. (2017) Early brain development in infants at high risk for autism spectrum disorder. Nature 542:348-351
Otis, James M; Namboodiri, Vijay M K; Matan, Ana M et al. (2017) Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature 543:103-107

Showing the most recent 10 out of 123 publications