Autism spectrum disorder (ASD) is characterized by social impairments, including impaired social cognition, social percepfion, and social attention. Recently, there has been increased interest in examining the impact of motivational systems on social functioning in ASD. The frarinework of the so-called social motivation hypothesis of ASD is that functional disruption in brain circuits that support social motivational may constitute a primary deficit in ASD that may have downstream effects on the development of social cognition. The mesolimbic dopamine system arising in the ventral tegmental area (VTA) and projecfing to the nucleus accumbens (NAc) is an essential substrate for the expression of many forms of motivated behaviors. Human neuroimaging studies have demonstrated reduced mesolimbic activation in ASD to social rewards, suggesting that reduced function of the mesolimbic dopaminergic system may underlie decreased sociial motivation in ASD. Whereas social deficits in ASD may be related to pathological mesolimbic dopamine system activity, it is unknown if precise neural circuit manipulations that can directly control dopamine output in the NAc to promote pro-social behaviors in animal models of ASD. In addition, the neuropeptide oxytocin (OT) is a promising therapeufic to promote social engagement in ASD and is known to regulate VTA activity in response to social rewards specifically. However the functional neural circuitry by which OT neurons regulate VTA dopaminergic activity has not been identified. These are critical gaps in our understanding of the neural cii-cuitry that controls motivated social engagement. We propose a translational project integrating optogenetic circuit manipulafions in a mouse model of ASD with a clinical functional neuroimaging evaluation of the effects of OT on reward circuits in individuals with ASD.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HD079124-05
Application #
9296174
Study Section
Special Emphasis Panel (ZHD1)
Project Start
Project End
2019-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
5
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Lyu, Ilwoo; Kim, Sun Hyung; Girault, Jessica B et al. (2018) A cortical shape-adaptive approach to local gyrification index. Med Image Anal 48:244-258
Song, Liujiang; Llanga, Telmo; Conatser, Laura M et al. (2018) Serotype survey of AAV gene delivery via subconjunctival injection in mice. Gene Ther 25:402-414
Giles, Jareca M; Whitaker, Julia W; Moy, Sheryl S et al. (2018) Effect of Environmental Enrichment on Aggression in BALB/cJ and BALB/cByJ Mice Monitored by Using an Automated System. J Am Assoc Lab Anim Sci :
Sidorov, Michael S; Judson, Matthew C; Kim, Hyojin et al. (2018) Enhanced Operant Extinction and Prefrontal Excitability in a Mouse Model of Angelman Syndrome. J Neurosci 38:2671-2682
Mostapha, Mahmoud; Kim, SunHyung; Wu, Guorong et al. (2018) NON-EUCLIDEAN, CONVOLUTIONAL LEARNING ON CORTICAL BRAIN SURFACES. Proc IEEE Int Symp Biomed Imaging 2018:527-530
de Dumast, Priscille; Mirabel, Clement; Paniagua, Beatriz et al. (2018) SVA: Shape variation analyzer. Proc SPIE Int Soc Opt Eng 10578:
Fish, E W; Wieczorek, L A; Rumple, A et al. (2018) The enduring impact of neurulation stage alcohol exposure: A combined behavioral and structural neuroimaging study in adult male and female C57BL/6J mice. Behav Brain Res 338:173-184
Bailey, Rachel M; Armao, Diane; Nagabhushan Kalburgi, Sahana et al. (2018) Development of Intrathecal AAV9 Gene Therapy for Giant Axonal Neuropathy. Mol Ther Methods Clin Dev 9:160-171
Tu, Liyun; Styner, Martin; Vicory, Jared et al. (2018) Skeletal Shape Correspondence Through Entropy. IEEE Trans Med Imaging 37:1-11
Lyu, Ilwoo; Perdomo, Jonathan; Yapuncich, Gabriel S et al. (2018) Group-wise Shape Correspondence of Variable and Complex Objects. Proc SPIE Int Soc Opt Eng 10574:

Showing the most recent 10 out of 143 publications