CLINICAL TRANSLATIONAL CORE (CORE B) ABSTRACT The objectives of the new Clinical Translational Core of our IDDRC are to accelerate the translation of research discoveries into new treatments for neurodevelopmental disorders, through collaboration with basic scientists and clinicians, as well as to train future leaders in translational neuroscience. Resources offered by the Clinical Translational Core include preclinical support through a Human Neuron Core Component, composed of a Cellular Assay Development and Screening Service and a Human Neuron Differentiation Service. Additionally, support for translational work includes resources through a Clinical and Regulatory Affairs Service, a Data Analysis Core Component, Biorepository and preclinical consultation. The core has a proven record of success in designing and launching preclinical and clinical projects for IDDRC investigators.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-DSR-H (50))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital Boston
United States
Zip Code
Schwartz, Talia S; Wojcik, Monica H; Pelletier, Renee C et al. (2018) Expanding the phenotypic spectrum associated with OPHN1 variants. Eur J Med Genet :
Marsh, Ashley P L; Edwards, Timothy J; Galea, Charles et al. (2018) DCC mutation update: Congenital mirror movements, isolated agenesis of the corpus callosum, and developmental split brain syndrome. Hum Mutat 39:23-39
Sveinsdóttir, Kristbjörg; Ley, David; Hövel, Holger et al. (2018) Relation of Retinopathy of Prematurity to Brain Volumes at Term Equivalent Age and Developmental Outcome at 2 Years of Corrected Age in Very Preterm Infants. Neonatology 114:46-52
Sieberg, Christine B; Taras, Caitlin; Gomaa, Aya et al. (2018) Neuropathic pain drives anxiety behavior in mice, results consistent with anxiety levels in diabetic neuropathy patients. Pain Rep 3:e651
Sourati, Jamshid; Gholipour, Ali; Dy, Jennifer G et al. (2018) Active Deep Learning with Fisher Information for Patch-wise Semantic Segmentation. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support ( 11045:83-91
Koczkowska, Magdalena; Chen, Yunjia; Callens, Tom et al. (2018) Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844-848. Am J Hum Genet 102:69-87
Liang, Liang; Fratzl, Alex; Goldey, Glenn et al. (2018) A Fine-Scale Functional Logic to Convergence from Retina to Thalamus. Cell 173:1343-1355.e24
Torres, Alcy; Brownstein, Catherine A; Tembulkar, Sahil K et al. (2018) De novo ATP1A3 and compound heterozygous NLRP3 mutations in a child with autism spectrum disorder, episodic fatigue and somnolence, and muckle-wells syndrome. Mol Genet Metab Rep 16:23-29
Shannon, Morgan L; Fame, Ryann M; Chau, Kevin F et al. (2018) Mice Expressing Myc in Neural Precursors Develop Choroid Plexus and Ciliary Body Tumors. Am J Pathol 188:1334-1344
Waszak, Sebastian M; Northcott, Paul A; Buchhalter, Ivo et al. (2018) Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol 19:785-798

Showing the most recent 10 out of 498 publications