Although substantial progress has been made in the prevention and treatment of cardiovascular disease and its major risk factors, it has been predicted that thrombotic complications will remain the leading cause of death and disability and will represent a major burden to productivity worldwide well into the year 2020. Thrombosis remains the most prevalent cause of fatal diseases in developed countries. More than 80% of stroke cases are of thrombotic origin, and stroke is among the three leading causes of mortality and severe chronic disability in the US. Systemic anticoagulants like heparin prevent co-morbidity from deep vein thrombosis and reduce the progression of acute cerebral thrombosis. However, their bleeding side effects in the acute phase outweigh the benefits. An antithrombotic agent that can be administered to patients with severe acute thrombotic diseases, such as heart attack and stroke, without the risk of causing hemorrhage, would revolutionize the treatment of cardiovascular and cerebrovascular diseases. Protein engineering of thrombin has led to the development of the mutant W215A/E217A (WE) that is capable of sustained anticoagulant effects in non-human primates without bleeding complications. WE has compromised activity toward fibrinogen and PARI, but retains activity toward the anticoagulant protein C. Activation of protein C by WE on the endothelium is more effective in producing an anticoagulant effect than systemic administration of activated protein C. In addition to exploiting the protein C anticoagulant pathway, WE is capable of producing a profound antiplatelet effect by engaging the Gplb receptor and preventing its interaction with von Willebrand factor, which is a property not present in either activated protein C or heparin. Filing of an IND for the mutant WE is on track for August 2012. The remarkable success of WE in pre-clinical studies and its extraordinary promise as an effective anticoagulant/antithrombotic may be compromised in humans by its residual activity toward fibrinogen and PARI. The goal of this research project is to produce a new generation of thrombin mutants that have completely lost their activity toward fibrinogen and PARI, but retain activity toward protein C in the presence of the cofactor thrombomodulin.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HL112303-03
Application #
8656778
Study Section
Special Emphasis Panel (ZHL1)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Wu, Xiaobin; Kim, Heejeong; Seravalli, Javier et al. (2016) Potassium and the K+/H+ Exchanger Kha1p Promote Binding of Copper to ApoFet3p Multi-copper Ferroxidase. J Biol Chem 291:9796-806
Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing et al. (2016) Structural Architecture of Prothrombin in Solution Revealed by Single Molecule Spectroscopy. J Biol Chem 291:18107-16
Wagner, Erin K; Raychaudhuri, Soumya; Villalonga, Mercedes B et al. (2016) Mapping rare, deleterious mutations in Factor H: Association with early onset, drusen burden, and lower antigenic levels in familial AMD. Sci Rep 6:31531
Palekar, Rohun U; Vemuri, Chandu; Marsh, Jon N et al. (2016) Antithrombin nanoparticles inhibit stent thrombosis in ex vivo static and flow models. J Vasc Surg 64:1459-1467
Sanfilippo, K M; Wang, T F; Gage, B F et al. (2016) Incidence of venous thromboembolism in patients with non-Hodgkin lymphoma. Thromb Res 143:86-90
Pozzi, Nicola; Chen, Zhiwei; Di Cera, Enrico (2016) How the Linker Connecting the Two Kringles Influences Activation and Conformational Plasticity of Prothrombin. J Biol Chem 291:6071-82
Gohara, David W; Di Cera, Enrico (2016) Molecular Mechanisms of Enzyme Activation by Monovalent Cations. J Biol Chem 291:20840-20848
Pozzi, Nicola; Zerbetto, Mirco; Acquasaliente, Laura et al. (2016) Loop Electrostatics Asymmetry Modulates the Preexisting Conformational Equilibrium in Thrombin. Biochemistry 55:3984-94
Pozzi, N; Di Cera, E (2016) Dual effect of histone H4 on prothrombin activation. J Thromb Haemost 14:1814-8
Eickhoff, Christopher S; Zhang, Xiuli; Vasconcelos, Jose R et al. (2016) Costimulatory Effects of an Immunodominant Parasite Antigen Paradoxically Prevent Induction of Optimal CD8 T Cell Protective Immunity. PLoS Pathog 12:e1005896

Showing the most recent 10 out of 71 publications