Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG repeat in the DM protein kinase (DMPK) gene. Transcripts from the mutant allele contain an expanded CUG repeat, and are retained in the nucleus. This results in reduction of the kinase protein and toxicity of the mutant RNA. One mechanism for RNA toxicity is that splicing factors in the Muscleblind-like (MBNL) family are sequestered by the CUG-expanded RNA. This leads to abnormal regulation of alternative splicing and defects of miRNA biogenesis. It appears that many aspects of DM1 result from RNA toxicity (myotonia, insulin resistance) but DMPK reduction may contribute to the cardiac phenotypes. Deletion of Dmpk in mice produces cardiac conduction defects that are similar to those observed human DM1. This suggests that cardiac phenotypes of DM1 may result from combined effects of DMPK deficiency and RNA toxicity, but this possibility has not been rigorously tested. Studies in transgenic mice indicate that features of DM1 in skeletal muscle are reversible by targeting the mutant RNA with antisense oligonucleotides (ASOs). However, it is unclear whether this approach will be effective in the heart. In skeletal muscle, the nuclear-retained mutant transcripts are sensitized to ASOs, providing a mechanism for preferential knockdown of RNA from the mutant allele. Whether ASOs provide a method for cardiac correction without exacerbating DMPK deficiency is unknown. Here we propose to study the impact of DMPK deficiency on cardiac function, in the presence and absence of CUG-expanded RNA, and the feasibility of using ASOs to target CUG-expanded transcripts in the heart.
Aim 1 will characterize the effects of constitutive Dmpk deficiency on cardiac conduction and contractile function in mice. Acquired (ASO-mediated) Dmpk deficiency will also be examined.
Aim 2 will use transgenic mice to examine the effects of CUG-expanded RNA on alternative splicing, miR-1 biogenesis, and cardiac function in vivo.
Aim 3 will use mouse models to test for synergistic effects of RNA toxicity and Dmpk deficiency in the heart.
Aim 4 will use mice with RNA toxicity and Dmpk deficiency - the condition that approximates the molecular lesion in human DM1 heart - to assess therapeutic effects of ASOs on cardiac function in vivo.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54NS048843-12
Application #
8733761
Study Section
Special Emphasis Panel (ZNS1-SRB-S)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
12
Fiscal Year
2014
Total Cost
$343,340
Indirect Cost
$119,666
Name
University of Rochester
Department
Type
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Johnson, Nicholas E; Ekstrom, Anne-Berit; Campbell, Craig et al. (2016) Parent-reported multi-national study of the impact of congenital and childhood onset myotonic dystrophy. Dev Med Child Neurol 58:698-705
Slean, Meghan M; Panigrahi, Gagan B; Castel, Arturo López et al. (2016) Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks. DNA Repair (Amst) 42:107-18
Fitzgerald, Bryan P; Conn, Kelly M; Smith, Joanne et al. (2016) Medication adherence in patients with myotonic dystrophy and facioscapulohumeral muscular dystrophy. J Neurol 263:2528-2537
Heatwole, Chad; Bode, Rita; Johnson, Nicholas E et al. (2016) Myotonic dystrophy health index: Correlations with clinical tests and patient function. Muscle Nerve 53:183-90
Gloss, David; Moxley 3rd, Richard T; Ashwal, Stephen et al. (2016) Practice guideline update summary: Corticosteroid treatment of Duchenne muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 86:465-72
Heatwole, Chad; Johnson, Nicholas; Bode, Rita et al. (2015) Patient-Reported Impact of Symptoms in Myotonic Dystrophy Type 2 (PRISM-2). Neurology 85:2136-46
Yadava, Ramesh S; Foff, Erin P; Yu, Qing et al. (2015) TWEAK/Fn14, a pathway and novel therapeutic target in myotonic dystrophy. Hum Mol Genet 24:2035-48
Pandey, Sanjay K; Wheeler, Thurman M; Justice, Samantha L et al. (2015) Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1. J Pharmacol Exp Ther 355:329-40
Wojtkowiak-Szlachcic, Agnieszka; Taylor, Katarzyna; Stepniak-Konieczna, Ewa et al. (2015) Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy. Nucleic Acids Res 43:3318-31
Smith, Amanda E; McMullen, Kara; Jensen, Mark P et al. (2014) Symptom burden in persons with myotonic and facioscapulohumeral muscular dystrophy. Am J Phys Med Rehabil 93:387-95

Showing the most recent 10 out of 74 publications