This RDCRC proposal focuses on three relatively rare vascular malformations that are poorly understood in terms of biological mechanisms, resource-intensive to manage effectively and with high probability of serious neurological morbidity. Each disease is characterized by the development of a distinct category of vascular malformations and a unique spectrum of clinical and phenotypic outcomes, for which biological risk factors are either poorly understood or completely unknown. The identification of such risk factors that relate to disease progression would be of immediate significance for patient surveillance and for optimizing management. Further, although there are no specific medical therapies for these diseases, appropriate treatment (efficacy) trials will require risk stratification for selection and surrogate outcomes for trial development. The general effort is focused on the establishment of research grade, relational, scalable clinical databases to conduct observational or interventional trials. Further, we will identify novel markers for disease progression. The combined effort will foster new approaches to the diagnosis, prevention, and treatment of these three rare diseases, providing novel means of risk stratification that will be applicable to future clinical trials. The three projects synergize with one another in these common goals and objectives, their use of common infrastructure elements, and overlapping but complementary expertises of the investigators. For the Sturge-Weber Syndrome (SWS) project, our database will be capture SWS patients across the nation as they are seen at Sturge-Weber Foundation (SWF) Centers of Excellence. Thus, our database will be the first national SWS database with longitudinal clinical data. In addition, we will investigate urine biomarkers of angiogenesis as potential predictors of SWS disease progression and severity.
Our final aim will attempt to discover the molecular genetic basis for the syndrome, starting from a long-standing hypothesis first formulated by Rudolf Happle 20 years ago, but untested until now due to technical hurdles. Happle proposed that SWS is caused by somatic mutation in a critical gene mutations in which cannot be passed through the germline. We build on this hypothesis to propose that the somatic mutation might lie within a gene encoding a critical angiogenesis factor. Using high resolution SNP genotyping in affected and unaffected tissue from SWS patients, we propose a systematic approach to mapping and identifying the causative gene(s) for SWS. The illumination of the molecular genetic etiology of SWS will suggest new avenues for future development of therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54NS065705-05
Application #
8534294
Study Section
Special Emphasis Panel (ZRG1-HOP-Y)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
5
Fiscal Year
2013
Total Cost
$266,994
Indirect Cost
$13,113
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Wellman, Rebecca J; Cho, Su Bin; Singh, Pratibha et al. (2018) G?q and hyper-phosphorylated ERK expression in Sturge-Weber syndrome leptomeningeal blood vessel endothelial cells. Vasc Med :1358863X18786068
Morrison, Melanie A; Payabvash, Seyedmehdi; Chen, Yicheng et al. (2018) A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: Evaluating vascular injury and data labelling for machine learning. Neuroimage Clin 20:498-505
Walcott, Brian P; Winkler, Ethan A; Zhou, Sirui et al. (2018) Identification of a rare BMP pathway mutation in a non-syndromic human brain arteriovenous malformation via exome sequencing. Hum Genome Var 5:18001
Pawlikowska, Ludmila; Nelson, Jeffrey; Guo, Diana E et al. (2018) Association of common candidate variants with vascular malformations and intracranial hemorrhage in hereditary hemorrhagic telangiectasia. Mol Genet Genomic Med 6:350-356
De la Torre, Alejandro J; Luat, Aimee F; Juhász, Csaba et al. (2018) A Multidisciplinary Consensus for Clinical Care and Research Needs for Sturge-Weber Syndrome. Pediatr Neurol 84:11-20
Meybodi, Ali Tayebi; Kim, Helen; Nelson, Jeffrey et al. (2018) Surgical Treatment vs Nonsurgical Treatment for Brain Arteriovenous Malformations in Patients with Hereditary Hemorrhagic Telangiectasia: A Retrospective Multicenter Consortium Study. Neurosurgery 82:35-47
Kasthuri, Raj S; Montifar, Megan; Nelson, Jeffrey et al. (2017) Prevalence and predictors of anemia in hereditary hemorrhagic telangiectasia. Am J Hematol :
Zou, Xiaowei; Hart, Blaine L; Mabray, Marc et al. (2017) Automated algorithm for counting microbleeds in patients with familial cerebral cavernous malformations. Neuroradiology 59:685-690
Tang, Alan T; Choi, Jaesung P; Kotzin, Jonathan J et al. (2017) Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 545:305-310
Strickland, Corinne D; Eberhardt, Steven C; Bartlett, Mary R et al. (2017) Familial Cerebral Cavernous Malformations Are Associated with Adrenal Calcifications on CT Scans: An Imaging Biomarker for a Hereditary Cerebrovascular Condition. Radiology 284:443-450

Showing the most recent 10 out of 49 publications