The Administrative Core will provide the administrative infrastructure support necessary for the SNRP Scientific and Administrative Diredor and SNRP research teams to execute all activities in research, training and evaluation. The SNRP Administrative Diredor and Co-Diredor will strategically allocate the personnel and monetary resources of the Administrative Core to efficiently coordinate administration of budgets, assembly of reports, provide help in procurement for the specific research projects and support cores, as well as help to administer the Enrichment and Evaluation components within the overall SNRP. The Core also senses as a bureaucratic liaison, when necessary, between the Neurosdence Institute and other administrative branches of Morehouse School of Medicine. In addition, the Administrative Core will provide the logistic support necessary to successfully administer the External Advisory Committee and the Steering Committee. The experience and competence of members of the Administrative Core will foster a collegial research environment that encourages a fruitful interchange amongst a multidisdplinary team of scientists and educators.

Public Health Relevance

The success ofthe multi-component SNRP is critically dependent on effective administrative procedures to monitor progress and to guide the investigators, students and postdoctoral fellows in their professional development.

National Institute of Health (NIH)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Morehouse School of Medicine
United States
Zip Code
Leng, Tian-Dong; Li, Ming-Hua; Shen, Jian-Feng et al. (2015) Suppression of TRPM7 inhibits proliferation, migration, and invasion of malignant human glioma cells. CNS Neurosci Ther 21:252-61
Harms, Jonathan E; Benveniste, Morris; Kessler, Markus et al. (2014) A charge-inverting mutation in the "linker" region of ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors alters agonist binding and gating kinetics independently of allosteric modulators. J Biol Chem 289:10702-14
O'Bryant, Zaven; Vann, Kiara T; Xiong, Zhi-Gang (2014) Translational strategies for neuroprotection in ischemic stroke--focusing on acid-sensing ion channel 1a. Transl Stroke Res 5:59-68
Leng, Tiandong; Shi, Yejie; Xiong, Zhi-Gang et al. (2014) Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol 115:189-209
Li, Ming-Hua; Liu, Selina Qiuying; Inoue, Koichi et al. (2014) Acid-sensing ion channels in mouse olfactory bulb M/T neurons. J Gen Physiol 143:719-31
McMahon, Douglas G; Iuvone, P Michael; Tosini, Gianluca (2014) Circadian organization of the mammalian retina: from gene regulation to physiology and diseases. Prog Retin Eye Res 39:58-76
Inagaki, Akira; Frank, C Andrew; Usachev, Yuriy M et al. (2014) Pharmacological correction of gating defects in the voltage-gated Ca(v)2.1 Ca²? channel due to a familial hemiplegic migraine mutation. Neuron 81:91-102
Weeks, Autumn M; Harms, Jonathan E; Partin, Kathryn M et al. (2014) Functional insight into development of positive allosteric modulators of AMPA receptors. Neuropharmacology 85:57-66
Hiragaki, Susumu; Baba, Kenkichi; Coulson, Elise et al. (2014) Melatonin signaling modulates clock genes expression in the mouse retina. PLoS One 9:e106819