TRAINING UNIT Our success in unraveling the biology of rare diseases and in developing effective therapies for conditions such as ALS and related disorders depends critically on our engendering and nurturing a cadre of new clinician scientists in whom the spark of rare disease research has been ignited, and who will carry the torch of rare disease clinical research into the future. This will be accomplished by identifying and recruiting talented and highly motivated young people who wish to pursue a career in clinical research focused on ALS and related disorders. Trainees will be provided with an education in clinical research methodology, the science of rare disease research, grant writing and issues specifically relevant to ALS and related disorders. The consortium will foster trainee career development through mentorship and immersion in a clinical and scientific environment that is colaborative, supportive and rich in opportunity.

Public Health Relevance

Developing a cadre of young well-trained clinician-scientists focused on clincal-translational research focused on ALS and related disorders is critical to our collective success in developing effective therapies for this group of rare diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
1U54NS092091-01
Application #
8929491
Study Section
Special Emphasis Panel (ZTR1-CI-8 (01))
Program Officer
Gubitz, Amelie
Project Start
2014-09-30
Project End
Budget Start
2014-09-30
Budget End
2015-06-30
Support Year
1
Fiscal Year
2014
Total Cost
$96,607
Indirect Cost
$13,375
Name
University of Miami School of Medicine
Department
Type
DUNS #
052780918
City
Coral Gables
State
FL
Country
United States
Zip Code
33146
DeJesus-Hernandez, Mariely; Finch, NiCole A; Wang, Xue et al. (2017) In-depth clinico-pathological examination of RNA foci in a large cohort of C9ORF72 expansion carriers. Acta Neuropathol 134:255-269
Gendron, Tania F; Chew, Jeannie; Stankowski, Jeannette N et al. (2017) Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci Transl Med 9:
Gendron, Tania F; C9ORF72 Neurofilament Study Group; Daughrity, Lillian M et al. (2017) Phosphorylated neurofilament heavy chain: A biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol 82:139-146
Jacquier, Arnaud; Delorme, C├ęcile; Belotti, Edwige et al. (2017) Cryptic amyloidogenic elements in mutant NEFH causing Charcot-Marie-Tooth 2 trigger aggresome formation and neuronal death. Acta Neuropathol Commun 5:55
Esanov, Rustam; Cabrera, Gabriela Toro; Andrade, Nadja S et al. (2017) A C9ORF72 BAC mouse model recapitulates key epigenetic perturbations of ALS/FTD. Mol Neurodegener 12:46
Mackenzie, Ian R; Nicholson, Alexandra M; Sarkar, Mohona et al. (2017) TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron 95:808-816.e9
Benatar, Michael; Boylan, Kevin; Jeromin, Andreas et al. (2016) ALS biomarkers for therapy development: State of the field and future directions. Muscle Nerve 53:169-82
Esanov, Rustam; Belle, Kinsley C; van Blitterswijk, Marka et al. (2016) C9orf72 promoter hypermethylation is reduced while hydroxymethylation is acquired during reprogramming of ALS patient cells. Exp Neurol 277:171-177
Rebelo, Adriana P; Abrams, Alexander J; Cottenie, Ellen et al. (2016) Cryptic Amyloidogenic Elements in the 3' UTRs of Neurofilament Genes Trigger Axonal Neuropathy. Am J Hum Genet 98:597-614
Rossor, Alexander M; Oates, Emily C; Salter, Hannah K et al. (2015) Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2. Brain 138:293-310

Showing the most recent 10 out of 15 publications